
1

Part IV

Other Systems: II
Ada Tasks: A Brief Review

My duty as a teacher is to train, educate future programmers

Niklaus Wirth

2

The Development of Ada: 1/2

▪ A DoD study in the early and middle 1970s

indicated that enormous saving in software costs

(about $24 billion between 1983 and 1999) might

be achieved if the DoD used one common

programming language for all its applications

instead of 450 programming languages and

incompatible dialects used by its programmers.

▪ An international competition was held to design a

language based on DoD’s requirements.

▪ Seventeen proposals were submitted and four were

selected as semifinalists.

3

The Development of Ada: 2/2

▪ All semifinalists chose to base their languages on

Pascal.

▪ The final winner was the team lead by Jean

Ichibiah of CII Honeywell Bull.

▪ With some minor modifications, this language

referred to as Ada was adopted as an ANSI

standard in February 1983 (i.e., Ada 83).

▪ Ada was overhauled in 1995 (i.e., Ada 95) and then

in 2005 with less changes (i.e., Ada 2005) and more

changes in Ada 2012.

4

Ada Major Features

▪ Ada was originally designed for embedded and

real-time systems.

▪ Major features of Ada include:

➢Strong typing, runtime checking, parallel processing

(tasks, synchronous message passing), exception

handling, generic, OOP, polymorphism, etc.

▪ We will only focus on Ada’s task and

synchronization capabilities.

▪ A language is said to be strongly typed if it has

stricter typing rules at compile time.

5

Ada Task Type and Body: 1/4

▪ A task requires two components: a task type

(definition) and a task body (implementation).

task type My_Task is

declarations of exported identifies

end;

task body My_Task is

local declarations and statements

end;

If there is nothing to be exported,

the task type section can be

simplified as follows:

task My_Task;

6

Ada Task Type and Body: 2/4

▪ A task requires two components: a task type

(definition) and a task body (implementation).

with Ada.Text_IO;

use Ada.Text_IO;

procedure Main is

task my_Task;

task body my_Task is

begin
Put_line(“Hello world!”);

end my_Task;

begin
Put_Line(“Hello from the Main”);

End Main;

Hello World!

Hello from the Main

Output of this program,

but the order may be different

All tasks will run when the

Main starts. There is no

need to start a task.

The Main terminates only if

all its tasks terminate.

No join needed.

7

Ada Task Type and Body: 3/4
procedure To_Do is

task Study_for_Exam;

task Call_Mom;

task Go_Shopping;

task body Study_for_Exam is

-- statements

end Study_for_Exam;

task body Call_Mom is

-- statements

end Call_Mom;

task body Go_Shopping is

-- statements

end Go_Shopping;

-- these tasks are automatically created and run

begin -- To_Do

null;

-- procedure To_Do waits for all tasks to terminate

end To_Do;

8

Ada Task Type and Body: 4/4

▪ Static tasks can be declared as follows:

▪ Tasks can also be dynamically allocated:

agent : myTask;

philosophers : array (1..5) of myTask;

type access_to_myTask is access myTask;

to_myTask : access_to_myTask;

-- other statements

to_myTask := new myTask;

9

entry-accept: 1/4

▪ A task can only export its entry points to which

other tasks can call.

▪ The accept block, the rendezvous section, contains

the statements to handle this call.

task type myTask is

entry put(data : integer);

entry get(result: integer);

end myTask;

task body myTask is

myData : integer;

begin

-- other statement

accept put(x : integer) do

-- the rendezvous section

end put;

-- other statements

end;

these entries are used to access the task

10

entry-accept: 2/4

▪ Tasks run independently until

❖an accept statement

✓waits for someone to call this entry, then proceeds to

the rendezvous section. After this, both tasks execute

their ways.

❖an entry call

✓waits for the corresponding task reaching its

accept statement, then proceeds to the rendezvous

section. After this, both tasks execute their ways.

▪ This is a synchronous communication.

11

entry-accept: 3/4

▪ Multiple accepts may be used in a task body.

▪ Communication between tasks takes place, when

they rendezvous, through the actual parameters of

the entry call and the formal parameters in the

corresponding accept statement.

▪ The task that accepts the entry call causes

suspension of the calling task, retrieves

information from parameters, processes them, and

passes the results back through parameters.

▪ The caller resumes its execution once the accept

completes.

12

entry-accept: 4/4

▪ Thus, the entry-accept pair is a synchronous

channel communication.

▪ The task executes the entry call is the sender and

the task executes the corresponding accept

statement is the receiver.

▪ If the task executing the accept statement only

saves the information in the parameters and ends

the rendezvous, this is a simple one-direction

message passing.

▪ The task executing the accept statement may

return some data via the parameters.

13

Terminate and Delay

▪ The terminate statement terminates the task

that executes this terminate statement.

▪ The delay statement has the following syntax:

delay exp;

❖The delay statement suspends the task for at least exp

seconds.

❖If exp is zero or negative, the delay statement has no

effect.

14

A Simple Example: 1/2

task PRODUCER;

-- if nothing is exported,

-- a task declaration is simple

task body PRODUCER is

C : character;

begin

while not END_OF_FILE(STANDARD_INPUT) loop

GET(C); -- read a character from

-- the standard input
CONSUMER.REC(C); -- send it to CONSUMER

end loop;

end PRODUCER;

REC() is an entry in task CONSUMER

15

A Simple Example: 2/2

task type CONSUMER is

entry REC(C: in character);

end CONSUMER;

task body CONSUMER is

X : character;

begin

loop

accept REC(C: in character) do

X := C; -- retrieve the input character

end REC;

PUT(UPPER(X)); -- convert to upper case & print

end loop;

end CONSUMER;

rendezvous section

16

A Simple Mutex Lock

task type Mutex is

entry Lock;

entry Unlock;

end Mutex;

task body Mutex is

begin

loop

accept Lock;

accept Unlock;

end loop;

end Mutex;

MyLock : Mutex;

MyLock.Lock;

-- critical section

MyLock.Unlock;

Mutex is a task

This implementation is incomplete, because there is no built-in ownership.

17

The Select Statement: 1/2

▪ The select statement is used to provide for the

selection of alternative choices involving a

rendezvous between two tasks.

1. When select is used in a called task, it allows

multi-way choices known as selective-accepts;

2. When select is used in a calling task, it

allows two-way choices known as conditional

entry calls and timed entry calls.

18

The Select Statement: 2/2
select

select_alternative

or

select_alternative

or

select_alternative

-- other or select_alternatives

else

-- sequence_of_statements

end select;

If the corresponding entry already has queued

calls, one will be selected based on the

queuing policy.

Each select_alternative may be an

accept, a delay followed by some

other statements, or a terminate.

A select_alternative shall contain at least

one accept.

In addition, it can contain (1) at most one

terminate, (2) one or more delay,

or (3) an else.

Note that these three possibilities are

mutually exclusive.

If several accept blocks are available,

one of them is selected arbitrarily.
or and else are optional

A delay is selected when its expiration time

is reached if no other accept and delay

can be selected prior to the expiration time.

The else part is selected and its sequence of

statements are executed if no accept can

immediately be selected.

If there is an else, it means this select

does not have delay nor terminate!

19

Selective Accept: 1/2
task type Example is

entry Task_1(…..);

entry Task_2(…..);

entry Other_Task(…..);

end Example;

task body Example is

……

begin

loop

select

accept Task_1(……) do

-- statements

end Task_1;

or

accept Task_2(……) do

-- statements

end Task_2;

or

accept Other_Task(……) do

-- statements

end Other_Task;

or

delay expr;

end select;

end loop;

end Example;

A selective accept statement shall

contain at least one accept.

Additionally, it can contain

▪ only one terminate

▪ one or more delay

▪ an else

These three are mutually exclusive.

20

Selective Accept: 2/2

task body CONSUMER is

X : character;

begin

loop

select

accept REC(C: in character) do

X := C; -- retrieve the input character

end REC;

PUT(UPPER(X)); -- convert to upper case and print

or

terminate;

end select;

end loop;

end CONSUMER;

now the task can terminate as no entry calls

if no one calls REC(), the execution

goes to the or part and terminates

21

Dining Philosophers: 1/3

task type Chopstick is

entry Pick_Up;

entry Put_Down;

end Chopstick;

task body Chopstick is

begin

loop

select

accept Pick_Up;

accept Put_Down;

or

terminate;

end select;

end loop;

end Chopstick;

mutex

22

Dining Philosophers: 2/3
task type Philosopher is

entry Get_ID(k: in ID);

end Philosopher;

task body Philosopher is

i : ID;

limit :: constant := 100_100;

count : integer := 0;

left, right : ID;

begin

accept Get_ID(k: in ID) do

i := k;

end Get_ID;

left := i; right := i mod 5 + 1;

while count /= limit loop

Chop(left).Pick_Up;

Chop(right).Pick_Up;

-- eating

Chop(right).Put_Down;

Chop(left).Put_Down;

count := count + 1;

end loop;

end Philosopher;

Chop : array(ID) of Chopstick;

-- the 5 chopsticks

Philo : array(ID) of Philosopher;

-- the 5 philosophers

This solution is not deadlock-free!

23

Dining Philosophers: 3/3

procedure DiningPhilosophers is

subtype ID is integer range 1..5;

-- task Philosopher ……

-- task Chopstick ……

-- local variables

Chop : array(ID) of Chopstick; -- the 5 chopsticks

Philo : array(ID) of Philosopher; -- the 5 philosophers

begin – procedure DiningPhilosophers

for k in ID loop

Philo(k).Get_ID(k); -- assign ID

end loop;

end DiningPhilosophers;

24

Selective Accept with Guards

▪ Each select_alternative can have a guard:

“when condition =>”
loop

select

when condition1 =>

accept xyz(….) do

-- statements in accept

end xyz;

or when condition2 =>

accept abc(…) do

-- statements in accept

end abc;

-- other alternatives

or

terminate;

end select;

end loop;

These are the guards

It is a program error

if all guards are FALSE.

One and only one guards

whose conditions are

true will be selected.

The rules for using delay, terminate

and else are the same as those

without guards.

25

Dining Philosophers – 4 Chairs
task type GetChair is

entry Enter;

entry Exit;

end GetChair;

task body GetChair is

i : integer := 0;

begin

loop

select

when i < 4 => -- if there is a free chair

accept Enter; -- accept a chair request call

i := i + 1;

or when i = 4 =>

accept Exit; -- if no Enter call, accept Exit

i := i − 1;

or

terminate; -- terminate or delay for some time

end select;

end loop;

end GetChair;

this is a counting semaphore

26

Counting Semaphores

task type CountingSemaphore is

entry Initialize(N: in Natural);

entry Wait;

entry Signal;

end CountingSemaphore;

task body CountingSemaphore is

Count : Natural; -- non-negative integer

begin

accept Initialize(N : in Natural) do

Count := N;

end Initialize;

loop

select

when Count > 0 =>

accept Wait do

Count := Count – 1;

end Wait;

or when Count <= 0 =>

accept Signal;

Count := Count + 1;

end select;

end loop;

end CountingSemaphore;

27

Timed Entry Call

▪ A timed entry call has the following syntax:

▪ If the call is not selected before the expiration time is

reached, the entry call is cancelled.

▪ If the call is queued and not selected before the expiration

time is reached, an attempt to cancel the call is made.

▪ If the call completes due to the cancellation or completes

normally, the sequence of statements is executed.

select

entry_call;

other statements

or

delay expr;

sequence of statements (optional)

end select;

28

Conditional Entry Call: 1/2

▪ A conditional entry has the following syntax:

▪ When execution reaches the select statement and

the other party is not ready for a rendezvous

immediately, the call is cancelled and the else

part is executed.

▪ In other words, there is no waiting at the entry call

if the other party is not ready.

select

entry_call;

other statements

else

sequence of statements

end select;

29

Conditional Entry Call: 2/2

▪ The following does

❖Loops until a character can be read from the buffer

❖If a character can be read, process it and break the loop

❖If a character cannot be read immediately, do some local

things and try again later.

loop

select

BUFFER.GET(C);

-- process the retrieved character

exit;

else

-- do some other local computation

end select;

end loop;

30

The End

