Part 1V
Other Systems: I

Ada Tasks: A Brief Review

My duty as a teacher is to train, educate future programmers

Niklaus Wirth

The Development of Ada: 1/2

= A DoD study in the early and middle 1970s
Indicated that enormous saving in software costs
(about $24 billion between 1983 and 1999) might
be achieved if the DoD used one common
programming language for all its applications
Instead of 450 programming languages and
Incompatible dialects used by its programmers.

= An international competition was held to design a
language based on DoD’s requirements.

= Seventeen proposals were submitted and four were
selected as semifinalists. >

The Development of Ada: 2/2

= All semifinalists chose to base their languages on
Pascal.

= The final winner was the team lead by Jean
Ichibiah of CI1 Honeywell Bull.

= With some minor modifications, this language
referred to as Ada was adopted as an ANSI
standard in February 1983 (i.e., Ada 83).

= Ada was overhauled in 1995 (i.e., Ada 95) and then
In 2005 with less changes (i.e., Ada 2005) and more
changes in Ada 2012.

3

Ada Major Features

Ada was originally designed for embedded and
real-time systems.

Major features of Ada include:

» Strong typing, runtime checking, parallel processing
(tasks, synchronous message passing), exception
handling, generic, OOP, polymorphism, etc.

We will only focus on Ada’s task and
synchronization capabilities.

A language Is said to be strongly typed If it has
stricter typing rules at compile time.

Ada Task Type and Body: 1/4

= A task requires two components: a task type
(definition) and a task body (implementation).

i)
| |
| - . .. '}'s
i declarations of exported identifies LN
|

. e e e
i end; i {’ If there is nothing to be exported, ‘,
: E E the task type section canbe |
I . o . |
i task body My_Task is i i simplified as follows: i
i local declarations and statements | task My Task;)

1 B ——— -

end; !
e o o o o o o e S M B B B B B o B B B o B B o B B B o B B B o B B 1

Ada Task Type and Body: 2/4

= A task requires two components: a task type
(definition) and a task body (|mplementat|on)

I
| with Ada.Text IO; | pommmem = mm e eeee :
| use Ada.Text IO; L. -rHello World! :
: TEEERTE e _:_,rHello from the Main |
| ¢“‘ Pt [I ‘\ -----------
! prgeggl_l_l!_e__b:@_ep__!_s _________ Il R
I ." ”~ - N - TN ~
: i ask 'bo \'4 my Task I | RN but the order may be dlfferent ,
l I S~ .

, i begin s e

A\ l44 . I ———————————————————
P Put_line(Hellq world!”) ; | ! /Al tasks will run when the ™
: l end my Task; _/l] 1 | Mainstarts. There is no :
I ; P! need to start a task. I
| begin / Lo |
! 9 ; I 1 TheMain terminates only if §
: Put L:Lne(“Hello from the Main”) ;; all its tasks terminae. !
L End Main; : ‘_____I\Ig_jgl_n_n_eQQe_d _____ Wi

Ada Task Type and Body: 3/4

| procedure To Do is

- these tasks are automatically created and run

begin - To Do

null;

- procedure To Do waits for all tasks to terminate
end To Do; I

|
L P P S i]
| [¥asK Study For Exam; ~ |
: i task Call Mom; i \\ !
i "€a8K Go_Shopping; | \\\ \ :
NI O .
| o e e e e e e e e e AR Y- I
: i task body study for Exam is! \\« ,‘(: :
! i - statements e\ :
! i end Study for Exam; | \i :
i Ve R v VR | |
I I--------------------------------— ------------ l‘ I
| | taskbody Call Mom is o !
| i - statements 4 [|
| i end Call Mom; i ! :
R o o o o o o o ey R ————— Y2 I
' e e e e e e e e e e e, /, |
: i task body Go Shopping is v !
I i - statements e |
: ' end Go Shopping;] !
I =
| I
i |
i |
i |
i |
i |
i |
i |
i |

Ada Task Type and Body: 4/4

= Static tasks can be declared as follows:

o
- N
l.l-
|—l
(o)
n
(o)

o
o N
()
(p)
n
Q)
-
V)

<

=

U
Q
iy
=

<
H
[\
n
~

4 S
I

| type access_to_myTask is access myTask; i
! to myTask :@access to myTask, i
| -- other statements l
=\to_myTask = Nneéw myTask,; ,,=

entry-accept: 1/4

= A task can only export its entry points to which
other tasks can call.

= The accept block, the rendezvous section, contains
the statements to handle this call.

task type myTask is task body myTask is
~¥ entry put(data : integer); \, myData : integer,;
{4 entry get(result: integer); ., begin
end myTask;, ™ o~ Other statement

these entries are used to access the task ~ ©m@ P, -)
-- other statements

entry-accept: 2/4

= Tasks run independently until

“+*an accept statement

v'waits for someone to call this entry, then proceeds to
the rendezvous section. After this, both tasks execute
their ways.

“+an entry call

v'waits for the corresponding task reaching its
accept statement, then proceeds to the rendezvous
section. After this, both tasks execute their ways.

= This Is a synchronous communication.

10

entry-accept: 3/4

Multiple accepts may be used in a task body.

Communication between tasks takes place, when
they rendezvous, through the actual parameters of
the entry call and the formal parameters in the
corresponding accept statement.

The task that accepts the entry call causes
suspension of the calling task, retrieves
iInformation from parameters, processes them, and
passes the results back through parameters.

The caller resumes its execution once the accept
completes. 11

entry-accept: 4/4

Thus, the entry-accept pair is a synchronous
channel communication.

The task executes the entry call is the sender and
the task executes the corresponding accept
statement is the receiver.

If the task executing the accept statement only
saves the information in the parameters and ends
the rendezvous, this is a simple one-direction
message passing.

The task executing the accept statement may
return some data via the parameters. 12

Terminate and Delay

= The terminate statement terminates the task
that executes this terminate statement.

* The delay statement has the following syntax:
delay exp;

“*The delay statement suspends the task for at least exp
seconds.

“*If exp Is zero or negative, the delay statement has no
effect.

13

A Simple Example: 1/2

task PRODUCER,; task body PRODUCER is

-- if nothing is exported, C : character;

a task declaration issimple begin
while not END OF FILE(STANDARD INPUT) loop

GET(C); = read a character from
- the standard input
__--» CONSUMER.REC(C); = send it to CONSUMER

.-~ end loop:
end PRODUCER;

14

A Simple Example: 2/2

task type CONSUMER is task body CONSUMER is
entry REC(C: in character); X : character;
end CONSUMER; begin

|
|
A X:=C, -- retrieve the input character i

,/ lendREC, |
/’ PUT(UPPER(X)); - convert to upper case & print
/’ end loop;

/’ end CONSUMER;:

’
rendezvous section

15

A Simple Mutex Lock

task type Mutexis task body Mutex is MyLock : Mutex;

: entry Lock; begin :

entry Unlock; loop MyLoc_k._Lock; -

i end Mutex; accept Lock; - critical section
accept Unlock: MyLock.Unlock;

: end loop;

end Mutex;

The Select Statement: 1/2

= The select statement is used to provide for the
selection of alternative choices involving a
rendezvous between two tasks.

1. When select is used in a called task, it allows
multi-way choices known as selective-accepts;

2. When select is used in a calling task, it
allows two-way choices known as conditional
entry calls and timed entry calls.

17

The Select Statement: 2/2

----------------------------- 1 e |

E select =00 .}—;—,;,‘1 Each select_alternative may be an :

! select_alternative=""" /,,';,/,/ ! accept, a delay followed by some :

IE .. ;-)(.",.,I:I ,I 1 Othel’ Statements, or a terminate :

I or o7 T e e -

, E A ” s E , ‘-------------------------- ---------- -

I/ i select_alternative « //' ’i." | A select_alternative shall contain at least !

[Eor 7 i1 oneaccept :

! i select_alternative” [i In addition, it can contain (1) at most one :

H I -- other or select_alternatives : { terminate, (2) one or more delay, i

| algg s 1 or (3) an else. |
| ‘"I . SMaBnone

| /% -sequence of statements i ¢ 1 Notethat these three possibilities are i

\ | |end select; I B s ipe A i

N e ———— I 5 o o o o o i

‘\\\ I If several accept blocks are available, :

T e e e = I one of them is selected arbitrarily. :

I or and else are optional | et -

e o o o e o J . [— T) e e e e e i

LT TTTTT LT TP P PP PP PPPYPTPTPPP TPy FLLLLITTITYTTITTTrrs annnans Y : : If the corresponding entry already has queued=

; Ac!elay IS se_lected when its expiration time 2 1 calls, one will be selected based on the !

is reached if no other accept and delay 21 queuing policy. !

"

: can be selected prior to the expiration time. :
: The else P
: statements-arg executed if no acceptc

immediately be selggtaer ="

m“‘l‘

.
lll

art is selected and its sequence of :.%'{f there is an else, it means this select

: does not have delay nor terminate! 18

Selective Accept: 1/2

task type Exampleis task body Example is
entry Task 1(.. B N
entry Task 2(.....);« ~~. begin

contain at least one accept.
: Additionally, it can contain
: = only one terminate
= one or more delay
= anelse

* .
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

s, These three are mutually exclusive..:'

entry Other Task(....y, S~ loop _________________ .
end Example; LN “{gelect I
\\ . | iaccept Task_1(. ...)do 1l
NN | | - statements ::
AN N i end Task_1; T

I

[m—————

OO
)
8
-
:
(1]
=
-
("]

end Example;

19

Selective Accept: 2/2

task body CONSUMER is
X :character;, = aeeemeemmmmmmmmmemme—m——————————

begin j if no one calls RECY(), the execution i
loop -7 L Qoes to the or partand terminates |
select ‘,/"
accept REC(C: in character) do
X :=C; -- retrieve the input character
end REC;
PUTLURPER(X)); --convertto upper case and print
~or
e::rsn;;:::e‘ now the task can terminate as no entry calls
end loop;

end CONSUMER;

20

Dining Philosophers: 1/3

task type Chopstick is
entry Pick_Up;
entry Put Down;
end Chopstick;

task body Chopstick is
begin
loop
select mutex

EEEEEEEEESN EEEEEEEEETEEEEEEEEEERY

or
terminate;
end select;
end loop;
end Chopstick;

21

Dining Philosophers: 2/3

task type Philosopher is
entry Get_ID(k: in ID);
end Philosopher;

task body Philosopher is
i ID;
limit :: constant := 100 _100;

count : integer :=0;

left, right : ID;
eeReeeEessasesseesssssssesssssssssesssssnessneens, begin
i Chop : array(ID) of Chopstick; accept Get_ID(k: in ID) do

i --the 5 chopsticks i =k
: Philo : array(ID) of Philosopher; end Get_ID;
-- the 5 philosophers E left :=i; right:=imod 5 + 1;

--

while count /= limit loop
Chop(left).Pick_Up;
Chop(right).Pick_Up;

-- eating
Chop(right).Put_Down;
Chop(left).Put_Down;
count := count + 1;

end loop;
end Philosopher;

lll

22

Dining Philosophers: 3/3

procedure DiningPhilosophers is
subtype ID is integer range 1..5;

-- task Philosopher
-- task Chopstick

-- local variables

Chop : array(ID) of Chopstick; -- the 5 chopsticks
Philo : array(ID) of Philosopher; -- the 5 philosophers

begin - procedure DiningPhilosophers
forkin ID loop
Philo(k).Get_ID(K); -- assign ID
end loop;
end DiningPhilosophers;

Selective Accept with Guards

= Each select_alternative can have a guard.:
“when condition =>”

loop
select ____________
---------- ¥ when condition, => !
e P “~"acceptxyz(...)do
| These are the guards**......, : -- statements in accept
e ERCETT, »~endxyz
: It is a program error - oriwhen condition, => !
 Ifallguardsare : acceptabe(..)do "
| .
E One and only one guards i -- statements in accept
I whose conditions are : end abc;
! true will be selected. : -- other alternatives
| : or
: The rules for using delay, terminate }-::-::--:- > terminate;
I and else are the same as those . end select:
|
|

|
without guards. ! end loop; 24

Dining Philosophers - 4 Chairs

task type GetChairis : task body GetChair is

entry Enter; = i:integer:=0;
entry Exit; - begin
end GetChair; : loop
: select

rwheni<4=>
: i accept Enter;
this is a counting semaphore ===s====%1 j:=j+1;

! --if there is a free chair
|
i
' or when i =4 =3
|
]
1

-- accept a chair request call

accept Exit;
=11

-- if no Enter call, accept Exit

terminate; -- terminate or delay for some time
end select;
: end loop;
- end GetChair;

25

Counting Semaphores

task type CountingSemaphore is : task body CountingSemaphore is

entry Initialize(N: in Natural); Count : Natural; -- non-negative integer :
entry Wait; : begin .
entry Signal; - accept Initialize(N : in Natural) do
end CountingSemaphore; : Count := N;
: end Initialize;
loop
select

when Count> 0 =>
accept Wit do
Count := Count —1;
end Wait;
or when Count<=0=>
accept Signal;
Count := Count + 1;
end select;
: end loop;
- end CountingSemaphore;

L]
L e s NI NN NN N NN NN NN NN NN NN NN NN NS NN NN EEEEEEN .

26

Timed Entry Call

= A timed entry call has the following syntax:

entry_call;
other statements

delay expr;
seqguence of statements (optional)

L end select;

= |f the call is not selected before the expiration time is
reached, the entry call is cancelled.

= |If the call is queued and not selected before the expiration
time iIs reached, an attempt to cancel the call is made.

= |f the call completes due to the cancellation or completes
normally, the sequence of statements Is executed. 27

——————o——————
q

Conditional Entry Call: 1/2

= A conditional entry has the followmg syntax:

I entry_call;
other statements

| sequence of statements
| end select;

the other party is not ready for a rendezvous
Immediately, the call is cancelled and the else
part Is executed.

= |n other words, there is no waiting at the entry call
If the other party Is not ready.

28

Conditional Entry Call: 2/2

= The following does
“* Loops until a character can be read from the buffer
* If a character can be read, process it and break the loop

* If a character cannot be read immediately, do some local
things and try again later.

e ———— e
loop

select
BUFFER.GET(C);
-- process the retrieved character
exit;
else
-- do some other local computation
end select;
i end loop;

29

The End

