
1

Exam I Comments

Spring 2019

It takes a really bad school to ruin a good student
and

a really fantastic school to rescue a bad student.

Dennis J. Frailey

q Write your answers in a technical/formal style.
q Avoid the use of imprecise and non-professional

wording and language as computer science is an
exact science and we must learn to communicate
in a professional way.

q Present all key elements as grading is based on
how many key elements are answered properly.

q Justify your answer. For example, if you claim
there is a race condition, then show it with
execution sequences.

q I do not do grade inflation.

2

q Your output should look like the
table shown on the right side of
this slide if you ran your
program on an Intel-based CPU.

q From 0! To 20!, the results are
correct.

q 21!, 22! and 24! become negative
and 25! is less than 23!

3

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880

10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = -4249290049419214848
22! = -1250660718674968576
23! = 8128291617894825984
24! = -7835185981329244160
25! = 7034535277573963776

q The minimum and maximum of long are system
dependent. See limits.h for the details.

q On my MacBook Air and iMac under gcc, the
minimum and maximum values of the long
int type, which are the same as the long
long int type, are -9223372036854775808
and 9223372036854775807.

q In general, if a signed integer is represented by
k+1 bits with 1 sign bit, then the minimum and
maximum are likely to be -2k-1 and 2k-1. If the
computed result is larger than 2k-1, only the last
k bits would be stored.

4

q Suppose a 4-bit register is used for multiplication.
q Multiplying 01102 = 610 and 01012 = 510 yields
3010 = 111102.

q Because we only use 4-bit registers, the stored
result would be the last 4 bits 11102.

q Because we use signed integers, the first bit is
the sign bit (i.e., 0 – positive and 1 – negative), and
11102 actually means -210 under the commonly
seen 2’s complement system. Note that
different computer architectures would produce
different results.

5

q 4-bit Representation

6

00002= 010
00012= 110

00102= 210

00112= 310

01002= 410

01012= 510

01102= 610

01112= 710
10002= -810

11112= -110

10012= -710

10102= -610

10112= -510

11002= -410

11012= -310

11102= -210

MAX + 1 ® MINwrapping

2’s complement:

11102 (negative)

00012 (bit flipping)

00102 (adding 1)

-210

q Modern CPUs have two execution modes: the user
mode and the supervisor (or system, kernel,
privileged) mode, controlled by a mode bit.

q The OS runs in the supervisor mode and all user
programs run in the user mode. Some
instructions that may do harm to the OS (e.g., I/O
and CPU mode change) are privileged
instructions, which, for most cases, can only be
used in the supervisor mode.

q When execution switches to the OS (resp., a user
program), execution mode must be changed to the
supervisor (resp., user) mode.

7

q An interrupt is an event that requires OS’s
attention. It may be generated by hardware
(e.g., I/O completion and timer) or software
(e.g., system call and division by 0).

q Interrupts generated by software (e.g., division
by 0, page fault and system call) are traps.

q Don’t forget mode switch.
q Interrupts are not signals and are not

called. Signals have a different meaning in
operating systems.

8

q Interrupts are not machine instructions, not
signals, not functions/procedures.

q Signals have a different meaning in OS.
q Interrupts, machine instructions, threads,

processes are NOT called.
q OS does not call an interrupt. Except for

system calls and a few others, interrupts are
not called to happen.

q Many answered this question by stating the
result of an interrupt rather than talking about
an interrupt itself.

9

10
10

new terminated

runningready

waiting

converting to process

admitted

waiting for CPU

scheduler dispatch

I/O or event waitI/O or event
completion

interrupt

reclaim resource
destroy process

waiting for I/O or event

exit

q The context of a process is the environment for
that process to run properly.

q This includes process ID, process state, registers,
memory areas, program counter, files, scheduling
priority, etc.

q The sequence of actions are:
Ø Control switches back to the OS. Mode switch may be

needed.
Ø The outgoing process is suspended, and its context saved.

Depending on the nature of this context switch, this outgoing
process may be moved to the Ready or Waiting state. It
could also be moved to the Terminated state if it exits or
causes an error.

Ø The context of the incoming process is loaded and its state is
set to Run.

Ø Resume its execution. Mode switch may be needed.

11

q A race condition is a situation in which
more than one processes or threads access a
shared resource concurrently, and the result
depends on the order of execution.

q Use instruction level execution sequences for
your examples.

q You must show concurrent sharing in your
execution sequences.

q It takes two execution sequences to justify
the existence of a race condition, because you
need to show the results depend on
the order of execution.

12

13

int x, a = 4, b = 5;
Process 1 Process 2
x = a

x = b
x = b

x = a

exe seq 1
x = 5

exe seq 2
x = 4

This is not a valid example to show the
existence of a race condition because
variable x is not shared concurrently.

14

int Count = 10;

Process 1 Process 2

Count++; Count--;

Count = 9, 10 or 11?

Higher-level language statements
are not atomic

Only say Count++ and Count-- would cause a race
condition is inaccurate because the “sharing” and
“concurrent access” conditions are not addressed.

15

int Count = 10;

Process 1 Process 2

LOAD Reg, Count LOAD Reg, Count
ADD #1 SUB #1
STORE Reg, Count STORE Reg, Count

The problem is that the execution flow may be switched in
the middle. Possible answers are 9, 10 or 11.
Show two execution sequences.

16

LOAD 10 10
LOAD 10 10

SUB 9 10

ADD 11 10

STORE 11 11

STORE 9 9

Inst Reg Memory Inst Reg Memory
Process 1 Process 2

overwrites the previous value 11

First Execution Sequence

17

LOAD 10 10
ADD 11 10

LOAD 10 10

SUB 9 10

STORE 9 9

STORE 11 11

Inst Reg Memory Inst Reg Memory
Process 1 Process 2

overwrites the previous value 9

Second Execution Sequence

q You should use instruction level
interleaving to demonstrate the
existence of race conditions, because

a) higher-level language statements are not
atomic and can be switched in the middle
of execution

b) instruction level interleaving can show
clearly the “sharing” of a resource among
processes and threads.

18

19

int a[3] = { 3, 4, 5};

Process 1 Process 2

a[1] = a[0] + a[1]; a[2] = a[1] + a[2];

Process 1 Process 2 Array a[]
a[1]=a[0]+a[1] { 3, 7, 5 }

a[2]=a[1]+a[2] { 3, 7, 12 }

Process 1 Process 2 Array a[]
a[2]=a[1]+a[2] { 3, 4, 9 }

a[1]=a[0]+a[1] { 3, 7, 9 }

Execution Sequence 1

Execution Sequence 2

There is no
concurrent sharing,
not a valid example
for a race condition.

20

int Count = 10;

Process 1 Process 2
LOAD Reg, Count LOAD Reg, Count
ADD #1 SUB #1
STORE Reg, Count STORE Reg, Count

Process 1 Process 2 Memory
LOAD Reg, Count 10

LOAD Reg, Count 10
SUB #1 10

ADD #1 10
STORE Reg, Count 11

STORE Reg, Count 9

variable
count is
shared
concurrently
here

21

printf("The root process %d, ppid = %d\n\n", getpid(), getppid());
n = atoi(argv[1]);
for (i = 1; i <= n; i++) {

if ((pid = fork()) == 0) { // left child
printf("My ID = %d My PPID = %d\n", getpid(), getppid());
exit(0); // left child must exit

}
else { // parent

if ((pid = fork()) == 0) { // right child
printf("My ID = %d My PPID = %d\n", getpid(), getppid());

} // must keeps creating
else {

wait(NULL); // parent must wait for
wait(NULL); // both children
exit(0); // parent exits

}
}

}

22

q Obvious cases are as follows (i.e., 2, 3 and 4):
Process 1 Process 2 x in memory

x = 2*x 0
x++ 1
x++ 2

Process 1 Process 2 x in memory
x++ 1

x = 2*x 2
x++ 3

Process 1 Process 2 x in memory
x++ 1
x++ 2

x = 2*x 4

The final result cannot
be greater than 4,
because x=2*x can
only double the result
of Process 1.

23

q Non-obvious cases are as follows (i.e., 0 and 1):
Process 1 Process 2 x in memory

LOAD x 0
MUL #2 0

x++ 1
x++ 2

SAVE x 0

Process 1 Process 2 x in memory
LOAD x 0
MUL #2 0

x++ 1
SAVE x 0

x++ 1

24

int status[2]; // status of a process
int turn; // initialized to either 0 or 1

P0 P1
status[0]=COMPETING; status[1] = COMPETING;
while (status[1]==COMPETING) { while (status[0]==COMPETING) {

status[0]=OUT_CS; status[1]=OUT_CS;
repeat until (turn==0); repeat until (turn==0 || turn==1);
turn = 0; turn = 1;
status[0] = COMPETING; status[1] = COMPETING;

}

Before entering while, status[] is COMPETING
When loops back status[] is set to COMPETING
P0 enters its critical section

iff status[0] is COMPETING and status[1] not COMPETING
P1 enters its critical section

iff status[1] is COMPETING and status[0] not COMPETING
If both P0 and P1 are in their critical section, status[0] (and status[1])

must be COMPETING and not COMPETING at the same time.

25

int status[2]; // status of a process
int turn; // initialized to either 0 or 1

P0 P1
status[0]=COMPETING; status[1] = COMPETING;
while (status[1]==COMPETING) { while (status[0]==COMPETING) {

status[0]=OUT_CS; status[1]=OUT_CS;
repeat until (turn==0); repeat until (turn==0 || turn==1);
turn = 0; turn = 1;
status[0] = COMPETING; status[1] = COMPETING;

}

turn plays no role here.
REASON:

If a process sets status[] to COMPETING and
finds the other status[] being non-COMPETING,
this process enters its critical section.

In this case, the process never sets its status[] to OUT_CS
and turn to 0 or 1.

Hence, you should not use turn and OUT_CS in your argument.

q I expected you to receive approximately
70 points as shown below.

26

Problem Possible Expected Class
Average

Class
Median

1 a(i) 3 2 1 1
3(ii) 7 5 3 4

2 a 10 8 8 9
b 10 8 6 7

3 a 10 8 8 10
b 10 8 6 7

4 a 10 8 6 7
5 a 10 7 4 4

b 15 10 8 9
c 15 10 4 0
Total 100 74 55 51

from class
slides directly

50 points
expected

27

1a 1b 2a 2b 3a 3b 4a 5a 5b 5c Class

Min 0 0 0 0 0 0 0 0 0 0 6

Max 3 6 10 10 10 10 10 10 15 15 92

Median 1 4 9 7 10 7 7 4 9 0 51

Avg 1 3 8 6 8 6 6 4 8 4 55

St DEV 1 2 3 3 3 3 3 3 5 6 20

§Problems 2a, 2b, 3a, 3b and 4a are from our course slides.
§Problem 1 is an exercise stated in Programming Assignment I.
§Problem 5a tests whether you know fork() properly.
§Problem 5b tests whether you can use machine instruction interleaving.
§Problem 5c is a simple problem using prove-by-contradiction.

28

minimum (6) maximum(92)

median (51)

average (55)
1st quartile (42) 3rd quartile (69)

¼ scores¼ scores¼ scores¼ scores

There were no outliers

50% of your scores is in the range of 42 and 69

Average > Mean →
top half performed better than the lower half

29

3

1

5
6

99

15

8

1
2

If the 12 scores lower than 40
are removed, class average
and median become 61 and 59.

30

median
mean

q Many of you did not study the slides carefully. Even
the easiest problems were answered poorly/incorrectly.

q Some just provide an answer or value without
elaboration. I am not supposed to finish your answer
for you. Whenever a justification and/or elaboration is
needed, please do it. Use correct wording.

q If execution sequences are needed, always provide
valid ones. Otherwise, you will receive a ZERO.

q Please study harder, ask questions, and make sure you
understand the subjects.

q Your grade is proportional to the quality of your
answers and is not proportional to the time you spent!

q I do not do grade inflation.

31

32

It takes a really bad school to ruin a good student
and

a really fantastic school to rescue a bad student.

Dennis J. Frailey

33

The End

