
1

Exam 2 Comments

Spring 2019

It takes a really bad school to ruin a good student

and

a really fantastic school to rescue a bad student.

Dennis J. Frailey

❑ Write your answers in a technical/formal style.

❑ Avoid the use of imprecise and non-professional

wording and language as computer science is an

exact science and we must learn to communicate

in a professional way.

❑ Present all key elements as grading is based on

how many key elements are answered properly.

❑ Justify your answer. For example, if you claim

bounded violation is violated, then show it with

an execution sequence. Don’t make a vague

claim without a good justification.

❑ I do not do grade inflation.
2

❑ Process Pi exits its

repeat-until

loop sees flag[j]

being not IN_CS,

and right before that

Pi sets flag[i] to

IN_CS.

❑ By the same reason,

if Pj is in its critical

section, flag[j] is

IN_CS and flag[i]

is not IN_CS.

❑ If Pi and Pj were

both in the critical

section, flag[i]

would be IN_CS

and not IN_CS at

the same time. 3

int flag[2]; // initialized to OUT_CS

int turn; // initialized to 0 or 1

Process i (Pi), i = 0 or 1
// Enter Protocol

repeat

flag[i] = REQUEST;

while (turn != i && flag[j] != OUT_CS)

;

flag[i] = IN_CS;

until flag[j] != IN_CS;

turn = i;

Critical Section
// Exit Protocol

turn = j;

flag[i] = OUT_CS;

❑ Variable turn is not

used in the reasoning.

❑ If Pi and Pj are both

in the critical section,

they execute the

statement turn = i.

❑ If Pi executes this

statement first

followed by Pj, the

value of turn is j.

❑ If Pj executes this

statement first

followed by Pi, the

value of turn is i.

❑ Hence, turn will not

have two values at

the same time.
4

int flag[2]; // initialized to OUT_CS

int turn; // initialized to 0 or 1

Process i (Pi), i = 0 or 1
// Enter Protocol

repeat

flag[i] = REQUEST;

while (turn != i && flag[j] != OUT_CS)

;

flag[i] = IN_CS;

until flag[j] != IN_CS;

turn = i;

Critical Section
// Exit Protocol

turn = j;

flag[i] = OUT_CS;

❑ Variable turn is set only once in the if statement and is not reset when

exits the critical section.

❑ Suppose P0 sets turn to 0 and enters the critical section. Because P0 does

not reset turn, P0 may come back and re-enter the critical section.

❑ This may repeat again and again, and bounded waiting fails. 5

int status[2];

int turn; // initialized to 0 or 1

Process 0 Process 1
status[0] = COMPETING; status[1] = COMPETING;

do { do {

while (turn != 0) { while (turn != 1) {

status[0] = OUT_CS; status[1] = OUT_CS;

if (status[turn] == OUT_CS) if (status[turn] == OUT_)CS)

turn = 0; turn = 1;

} }

status[0] = IN_CS; status[1] = IN_CS;

} while (status[1] == IN_CS); } while (status[0] == IN_CS);

Critical Section
status[0] = OUT_CS; status[1] = OUT_CS;

6

P0 P1 turn status[0] status[1] Comment

1 0

2 s[0]=C s[1]=C 0 C C Entering

3 while while 0 C C P0 breaks while

4 s[0]=IN 0 IN C P0 about to enter

5 s[1]=OUT 0 IN OUT P0 about to enter

6 P0 enters its critical section
7 s[0]=OUT if 0 OUT OUT P0 enters CS as

turn = 0

8 P0 comes back
9 s[0]=C while loops back 0 C OUT P0 entering

10 if 0 C OUT if is false

11 while while 0 C OUT P1 loops back

12 s[0]=IN 0 IN OUT P0 about to enter

13 P0 enters its critical section
status[0] = COMPETING; status[1] = COMPETING;

do { do {

while (turn != 0) { while (turn != 1) {

status[0] = OUT_CS; status[1] = OUT_CS;

if (status[turn] == OUT_CS) if (status[turn] == OUT_)CS)

turn = 0; turn = 1;

} }

status[0] = IN_CS; status[1] = IN_CS;

} while (status[1] == IN_CS); } while (status[0] == IN_CS);

❑ A race condition is a situation in which
more than one process or thread access a
shared resource concurrently, and the result
depends on the order of execution.

❑ Use instruction level execution sequences for
your examples.

❑ You must show concurrent sharing in your
execution sequences.

❑ It takes two execution sequences to justify
the existence of a race condition, because you
need to show the results depend on
the order of execution.

7

8

int x, a = 4, b = 5;

Process 1 Process 2
x = a

x = b

x = b

x = a

exe seq 1

x = 5

exe seq 2

x = 4

This is not a valid example to show the

existence of a race condition because

variable x is not shared concurrently.

9

int Count = 10;

Process 1 Process 2

Count++; Count--;

Count = 9, 10 or 11?

Higher-level language statements

are not atomic

Only say Count++ and Count-- would cause a race

condition is inaccurate because the “sharing” and

“concurrent access” conditions are not addressed.

10

int Count = 10;

Process 1 Process 2

LOAD Reg, Count LOAD Reg, Count

ADD #1 SUB #1

STORE Reg, Count STORE Reg, Count

The problem is that the execution flow may be switched in

the middle. Possible answers are 9, 10 or 11.

Show two execution sequences.

11

LOAD 10 10

LOAD 10 10

SUB 9 10

ADD 11 10

STORE 11 11

STORE 9 9

Inst Reg Memory Inst Reg Memory
Process 1 Process 2

overwrites the previous value 11

First Execution Sequence

12

LOAD 10 10

ADD 11 10

LOAD 10 10

SUB 9 10

STORE 9 9

STORE 11 11

Inst Reg Memory Inst Reg Memory
Process 1 Process 2

overwrites the previous value 9

Second Execution Sequence

❑ You should use instruction level
interleaving to demonstrate the
existence of race conditions, because

a) higher-level language statements are not
atomic and can be switched in the middle
of execution

b) instruction level interleaving can show
clearly the “sharing” of a resource among
processes and threads.

13

14

int a[3] = { 3, 4, 5};

Process 1 Process 2

a[1] = a[0] + a[1]; a[2] = a[1] + a[2];

Process 1 Process 2 Array a[]

a[1]=a[0]+a[1] { 3, 7, 5 }

a[2]=a[1]+a[2] { 3, 7, 12 }

Process 1 Process 2 Array a[]

a[2]=a[1]+a[2] { 3, 4, 9 }

a[1]=a[0]+a[1] { 3, 7, 9 }

Execution Sequence 1

Execution Sequence 2

There is no

concurrent sharing,

not a valid example

for a race condition.

15

int Count = 10;

Process 1 Process 2
LOAD Reg, Count LOAD Reg, Count

ADD #1 SUB #1

STORE Reg, Count STORE Reg, Count

Process 1 Process 2 Memory

LOAD Reg, Count 10

LOAD Reg, Count 10

SUB #1 10

ADD #1 10

STORE Reg, Count 11

STORE Reg, Count 9

variable

count is

shared

concurrently

here

❑ The following execution sequence is
not acceptable, because count++ and
count–- are higher level language
statements mixed with machine
instructions. These statements apply
to memory and have immediate impact.

16

int count = 0;

Process 1 Process 2
LOAD count LOAD count

count++ count--

SAVE count SAVE count

❑ The following is an obvious solution.

17

❑ If you insist that Thread 2 can only have one

statement to print 2, here is another solution.

❑ After printing 2 the first time, the printing

process goes “forward” to Thread 3. Then, the

next time, the printing process goes “backward”.

18

semaphore S1 = 1, S2 = 0, S3 = 0;

Thread 1 Thread 2 Thread 3
int Forward = TRUE;

while (1) { while (1) { while (1) {

S1.Wait(); S2.Wait(); S3.Wait();

cout << “1”; cout << “2”; cout << “3”;

S2.Signal(); if (Forward) S2.Signal();

} S3.Signal(); }

else

S1.Signal();

Forward = !Forward;

}

❑ If Wait() is not atomic, multiple threads can

call Wait() and increase the counter at the

same time. Race condition can happen.

19

Mutual Exclusion

semaphore S=1;

S.Wait();

Critical Section

S.Signal();

P0 P1 count Comment

1 1 =1 for M.Ex

2 S.Wait() S.Wait() 1 Both call

3 LA count LA count Reg=1, 1 Non-Atomic

4 SUB #1 SUB #1 Reg=0, 1 Register is 0

5 SA count SA count 0 count is 0

6 Both processes enter their critical sections

❑ We assume the weirdo (philosopher 5) always

picks his right chopstick first followed by his

left one, and all normal ones pick their left first.

20

if the weirdo has his right chopstick then

if the weirdo has his left chopstick then

the weirdo eats and there is no deadlock.

else // weirdo’s left is taken by philosopher 4 as his right

philosopher 4 eats. no deadlock.

else // the weirdo does not have his right because philosopher 1 has it as his left

// weirdo’s left is available

if philosopher 1 has his right then

philosopher 1 eats and there is no deadlock

else // philosopher 1’s right is taken by philosopher 2 as his left

if philosopher 2 has his right then

philosopher 2 eats and there is no deadlock

else // philosopher 2’s right is taken by philosopher 3 as his left

if philosopher 3 has his right then

philosopher 3 eats and there is no deadlock

else // philosopher 3’s right is taken by philosopher 4 as his left

philosopher 4 eats as he can use weirdo’s left as his right

21

weirdo has

his right

philosopher 1

cannot eat

if weirdo also has

his left, weirdo eats

if weirdo does not have

his left, it is taken by philo 4

as his right and philo 4 eats

if weirdo does not have

his right, this chop is

taken by philo 1, ….

Philo 4 eats

❑ The following is the basic code:

❑ Thus, thread Ti uses a[(i+1)%n] and modifies

a[i] and Center.

❑ This is similar to the dining philosophers problem.

22

while (1) {

a[i] = f(a[i], a[(i+1)%n]);

Center = a[i] + Center;

}

❑ We need a semaphore for each a[i]. Ti needs

two semaphores for a[i] and a[(i+1)%n] to

access a[i] and a[(i+1)%n].

❑ Because Center is accessed by all threads, we

also need a semaphore to protect Center.

23

semaphore S_Center = 1;

semaphore S_a[n] = { 1, 1, ….., 1};

24

semaphore S_Center = 1;

semaphore S_a[n] = { 1, 1, ….., 1};

while (1) {

S_a[(i+1)%n].Wait();

Local = a[(i+1)%n];

S_a[(i+1)%n].Signal();

fx = f(a[i], Local);

S_a[i].Wait();

a[i] = fx;

S_a[i].Signal();

S_Center.Wait();

Center = fx + Center;

S_Center.Signal();

}

copy a[(i+1)%n] to Local

Because f() does not modify

a[i] and Local, no lock needed.

update a[i]

update Center

25

semaphore S_Center = 1;

semaphore S_a[n] = { 1, 1, ….., 1};

while (1) {

// other irrelevant computation

S_a[(i+1)%n]).Wait();

S_a[i].Wait();

S_Center.Wait();

a[i] = f(a[i], a[(i+1)%n]);

Center = a[i] + Center;

S_Center.Signal();

S_a[i].Signal

S_a[(i+1)%n].Signal

// other irrelevant computation

}

This implementation serializes all threads, no concurrency at all.

Only one thread can modify a[] (not OK) and Center (OK).

26

semaphore S;

while (1) {

// other irrelevant computation

S.Wait();

a[i] = f(a[i], a[(i+1)%n]);

Center = a[i] + Center;

S.Signal();

// other irrelevant computation

}

This solution is even worse because there is no concurrency.

❑ All men can use the bathroom as long as there is a

man using it. Aren’t the man threads readers in

the readers-writers problem?

❑ By the same reason, all women can use the

bathroom as long as there is a woman using it.

Therefore, all woman threads form another

“reader” threads in the readers-writers problem.

❑ In conclusion, we have two groups of readers, and

while one group of readers is using the bathroom

the other group is blocked.

❑ What we need? Duplicate the reader thread, one

for men and the other for women.
27

28

int MaleCounter = 0, FemaleCounter = 0;

Semaphore MaleMutex = 1, FemaleMutex = 1;

Semaphore BathRoom = 1;

while (1) { while(1) {

// working // working

MaleMutex.Wait(); FemaleMutex().Wait();

MaleCounter++; FemaleCounter++;

if (MaleCounter == 1) if (FemaleCounter == 1)

BathRoom.Wait(); BathRoom.Wait();

MaleMutex.Signal(); FemaleMutex.Signal();

// use the bathroom // use the bathroom

MaleMutex.Wait(); FemaleMutex.Wait();

MaleCounter--; FemaleCounter--;

if (MaleCounter == 0) if (FemaleCounter == 0)

BathRoom.Signal(); BathRoom.Signal();

} }

if I am the first man/woman,

yield the bathroom

if I am the last man/woman,

yield the bathroom

❑ I expected you to receive approximately

70 points as shown below.

29

Problem Possible Expected Class

Average

Class

Median

1 a 15 10 10 13

b 15 7 5 0

c* 10 8 7 8

2 a 10 8 7 10

b 10 8 7 8

c 10 8 5 5

3 a 15 10 5 0

b 15 10 8 11

Total 100 69 53 56

30

1a 1b 1c 2a 2b 2c 3a 3b Class

Min 0 0 0 0 0 0 0 0 0

Max 15 15 10 10 10 10 15 15 100

Median 13 0 8 10 8 5 0 11 56

Avg 10 5 7 7 7 5 5 8 53

St DEV 6 7 3 4 4 3 6 7 26

▪Problem 1a is a problem similar to Attempt II

▪Problem 1b is a little more difficult, but you have a hint

▪Problem 1c is a “recycled” problem from EXAM I

▪Problem 2a, 2b and 2c were exercises assigned in class

▪Problem 3a is similar to the philosophers problem and

3b is a variation of the readers-writers problem.

31

1st quartile (29.5)

3rd quartile (69.5)average (53)

maximum(100)

median (56)

minimum (0)

¼ scores ¼ scores ¼ scores ¼ scores

32

4

1

6

3

11

10

33

5

7

❑ Many of you did not study the slides carefully. Even

the easiest problems were answered poorly/incorrectly.

❑ Some just provide an answer or value without

elaboration. I am not supposed to finish your answer

for you. Whenever a justification and/or elaboration is

needed, please do it. Use correct wording.

❑ Please study harder, ask questions, and make sure you

understand the subjects.

❑ Your grade is proportional to the quality of your

answers and is not proportional to the time you spent!

❑ In my experience the Final is usually easier because

difficult topics are spread thin.

❑ Again, I do not do grade inflation.

33

34

It takes a really bad school to ruin a good student

and

a really fantastic school to rescue a bad student.

Dennis J. Frailey

35

The End

