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The Kernel Abstraction 

Spring 2019 

I don’t know what the programming language  

of the year 2000 will look like, but I know it  

will be called FORTRAN. 

 

Charles Anthony Richard Hoare 

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website. 

   Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.  



Booting / Initial Program Loader 
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When a computer is powered up, 

     the booting procedure starts. 

A small record on the boot device 

     is read (by the BIOS). 

This small record may load more 

     records from the boot device,  

     making a larger “program”. 

Then, this program executes,  

     maybe loading more modules into memory. 

This program may clear memory, checking 

     for available devices, etc. 

Moreover, the kernel is loaded into memory. 

     When the kernel starts running, interrupts are enabled. 

Remember: OS is an interrupt-driven program. 
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Dual-Mode Operation 

Modern CPUs have two execution modes: the 
user mode and the supervisor (or system, kernel, 
privileged) mode, controlled by a mode bit. 

The OS runs in the supervisor mode and all 
user programs run in the user mode. 

Some instructions that may do harm to the OS 
(e.g., I/O and CPU mode change) are privileged 
instructions. Privileged instructions, for most 
cases, can only be used in the supervisor model. 

When execution switches to the OS (resp., a 
user program), execution mode is changed to 
the supervisor (resp., user) mode. 

 



Hardware Support:  

Dual-Mode Operation 1/2 

Kernel mode 

Execution with the full privileges of the hardware 

Read/write to any memory, access any I/O device, 

read/write any disk sector, send/read any packet 

User mode 

Limited privileges 

Only those granted by the operating system 

kernel 

On the x86, mode stored in the EFLAGS register. 

On the MIPS, mode in the status register. 
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Hardware Support: 

Dual-Mode Operation 2/2 

Privileged instructions 

Available to kernel 

Not available to user code 

Limits on memory accesses 

To prevent user code from overwriting the kernel 

Timer 

To regain control from a user program in a loop 

Safe way to switch from user mode to kernel mode, 

and vice versa 
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Mode Switch (User -> Kernel) 

From user mode to kernel mode 

Interrupts 

Triggered by timer, I/O devices, etc. 

Exceptions (Trap) 

Triggered by unexpected program behavior 

Or malicious behavior! 

System calls (aka protected procedure call) 

Request by a program for kernel to do some 

operation on its behalf 

Only limited # of very carefully coded entry 
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Mode Switch (Kernel -> User) 

From kernel mode to user mode 

New process/new thread start 

Jump to first instruction in program/thread 

Return from interrupt, exception, system call 

Resume suspended execution 

Process/thread context switch 

Resume some other process 

User-level upcall (UNIX signal) 

Asynchronous notification to user program 
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Thought Experiment 

How can we implement execution with limited 

privilege? 

Execute each program instruction in a 

simulator 

If the instruction is permitted, do the 

instruction 

Otherwise, stop the process 

Basic model in Javascript and other interpreted 

languages 

How do we go faster? 

Run the unprivileged code directly on the CPU! 8 



Privileged Instructions 

Examples? 

 

What should happen if a user program attempts to 

execute a privileged instruction? 
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A Model of  a CPU 
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A CPU with Dual-Mode 

Operation 
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Interrupt and Trap 
An event that requires the attention of the OS 

is an interrupt.  These events include the 
completion of an I/O, a keypress, a request for 
service, a division by zero and so on. 

Interrupts may be generated by hardware or 
software. 

An interrupt generated by software (i.e., 
division by 0) is referred to as a trap or an 
exception. 

Modern operating systems are interrupt driven, 
meaning the OS is in action only if an interrupt 
occurs. 
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What Is Interrupt-Driven? 

The OS is 
activated by an 
interrupt. 

The executing 
program is 
suspended. 

Control is 
transferred to 
the OS. 

A program will 
be resumed 
when the 
service 
completes. 
 

interrupt 

ADD #4, 3 

interrupt 
 handler 

  

service 

kernel 

mode switch 

kernel mode 

user mode 
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System Calls 

System calls provide an interface to the services 

made available by an operating system.  

A system call generates an interrupt (actually a 

trap), and the caller is suspended. 

Type of system calls: 

Process control (e.g., create and destroy processes) 

File management (e.g., open and close files) 

Device management (e.g., read and write operations) 

 Information maintenance (e.g., get time or date) 

Communication (e.g., send and receive messages) 



Sequence of  Steps Involved in 

a System Call 
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System Call Mechanism: 1/2 

load addr. X  

syscall 10 

X 

register 

    syscall 10 
service routine    syscall 

parameters 

a trap 
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System Call Mechanism: 2/2 

A system call generates 

a trap. 

The executing program 

(i.e., caller) is suspended. 

Control is transferred to 

the OS. 

A program will be 

resumed when the 

system call service 

completes. 

 

syscall 10 

interrupt 
 handler 

  

syscall  
services 

kernel 

mode switch 

kernel mode 

user mode 



Kernel System Call Handler 

Locate arguments 

 In registers or on user stack 

Translate user addresses into kernel addresses 

Copy arguments 

From user memory into kernel memory 

Protect kernel from malicious code evading checks 

Validate arguments 

Protect kernel from errors in user code 

Copy results back into user memory  

Translate kernel addresses into user addresses 
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A Problem 
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What’s to keep the process from overwriting the OS kernel?    

Or some other process running at the same time? 

 

What’s to keep it from overwriting the disk?   

From reading someone else’s files that are stored on disk? 



Main Points 

Process concept 

A process is the OS abstraction for executing a 

program with limited privileges 

Dual-mode operation: user vs. kernel 

Kernel-mode: execute with complete 

privileges 

User-mode: execute with fewer privileges 

Safe control transfer 

How do we switch from one mode to the other? 
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Process Abstraction 

Process: an instance of a program, running 
with limited rights 

Thread: a sequence of instructions within a 
process 

Potentially many threads per process (for 
now 1:1) 

Address space: set of rights of a process 

Memory that the process can access 

Other permissions the process has (e.g., 
which system calls it can make, what files it 
can access) 

 21 



Simple Memory Protection 

22 

Each process has two registers: 

    Base: points to the 1st address 

    Bound: length of a process 

The processor generates a  

    physical address. 

This address must be larger than 

       the value in the Base register 

       and smaller than the value of 

       Base + Bound. 

If a test fails, the hardware raises  

       an exception via an interrupt. 

There is no “relocation” here. 

    Will address this issue later in this semester. 



Towards Virtual Addresses 

Problems with base and bounds? 

Expandable heap and/or stack? 

Memory sharing between processes (e.g., shared 

memory segments) 

Memory fragmentation 

What if some memory segments should be 

moved around? 
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Logical, Virtual, Physical Address  

Logical Address: the address generated by the 

CPU. 

Physical Address: the address seen and used by 

the memory unit. 

Virtual Address: Run-time binding may generate 

different logical address and physical address.  

In this case, logical address is also referred to as 

virtual address.  (Logical = Virtual in this course) 



Virtual Addresses 

Translation done in 

hardware, using a 

table. 

Table set up by 

operating system 

kernel. 

Each section may be 

further cut into small 

pages scattering all 

over the physical 

memory. 
25 
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Hardware Timer: 1/2 

Because the operating system must maintain the 
control over the CPU, it has to prevent a user 
program from getting the CPU forever without 
calling for system service (i.e., I/O). 

Use an interval timer!  An interval timer is a 
count-down timer.   

Before a user program runs, the OS sets the 
interval timer to certain value.  Once the 
interval timer counts down to 0, an interrupt is 
generated and the OS can take appropriate 
action. 



Hardware Timer: 2/2 

Hardware device that periodically interrupts the 

processor 

Returns control to the kernel handler 

Interrupt frequency set by the kernel 

Not by user code! 

Interrupts can be temporarily deferred  

Not by user code! 

Interrupt deferral crucial for implementing 

mutual exclusion 
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Device Interrupts: 1/2 

OS kernel needs to communicate with physical 

devices 

Devices operate asynchronously from the CPU 

Polling: Kernel waits until I/O is done 

 Interrupts: Kernel can do other work in the meantime 

Device access to memory 

Programmed I/O: CPU reads and writes to device 

Direct memory access (DMA) by device 

Buffer descriptor: sequence of DMA’s 

E.g., packet header and packet body 

Queue of  buffer descriptors 

Buffer descriptor itself is DMA’ed 28 



Device Interrupts: 2/2 

How do device interrupts work? 

Where does the CPU run after an interrupt? 

What is the interrupt handler written in?  C? 

Java? 

What stack does it use? 

Is the work the CPU had been doing before the 

interrupt lost forever?   

If not, how does the CPU know how to resume 

that work? 
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How do we take interrupts safely? 

Interrupt vector 

Limited number of entry points into kernel 

Atomic transfer of control 

Single instruction to change:  

Program counter 

Stack pointer 

Memory protection 

Kernel/user mode 

Transparent restartable execution 

User program does not know interrupt 
occurred 

30 



Interrupt Vector 

Table set up by OS kernel; pointers to code to run 

on different events 
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Interrupt Stack: 1/2 

Per-processor, located in kernel (not user) 

memory 

Usually a process/thread has both: kernel and 

user stack 

Why can’t the interrupt handler run on the stack 

of the interrupted user process? 
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Interrupt Stack: 2/2 
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Interrupt Masking 

Interrupt handler runs with interrupts off 

Re-enabled when interrupt completes 

OS kernel can also turn interrupts off 

Example: when determining the next process or 
thread to run 

On x86 

CLI (clear the interrupt flag in the EFLAGS): 
disable interrupts 

STI (set the interrupt flag): enable 
interrupts 

Only applies to the current CPU (on a 
multicore) 
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Interrupt Handlers 

Non-blocking, run to completion 

Minimum necessary to allow device to take next 

interrupt 

Any waiting must be limited duration 

Wake up other threads to do any real work 

Linux: semaphore 

Rest of device driver runs as a kernel thread 
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Case Study: MIPS Interrupt/Trap 

Two entry points: TLB miss handler, everything else 

Save type: syscall, exception, interrupt 

and which type of interrupt/exception 

Save program counter: where to resume 

Save old mode, interruptible bits to status register 

Set mode bit to kernel 

Set interrupts disabled 

For memory faults 

Save virtual address and virtual page 

Jump to general exception handler 36 



Case Study: x86 Interrupt 

Save current stack pointer 

Save current program counter 

Save current processor status word (condition 

codes) 

Switch to kernel stack; put SP, PC, PSW on stack 

Switch to kernel mode 

Vector through interrupt table 

Interrupt handler saves registers it might clobber 
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x86 Registers 
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80286 introduced 4 segments: 

 CS – code segment 

 DS – data segment 

 SS – stack segment 

 ES – extra (E) segment 

 FS – pointer to more 

             extra data.   

             F comes after E 

 GS – pointer to more 

              extra data. 

              G comes after F 
 

EFLAGS – a 32-bit register  

                    for storing status 

                    of processor 

 



Before Interrupt 
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SS:ESP stack pointer 

CS:EIP  instructor pointer 

                 (program counter) 



During Interrupt 

40 

1. An interrupt occurs 

2. The hardware has jumped to the interrupt handler 

3. The handler saves the user context on the kernel 

           interrupt stack and changes the program counter 

           in kernel memory. 

2 

3 



After Interrupt 
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Why is the stack pointer saved twice on the interrupt stack? 

(Hint: is it the same stack pointer?) 



At end of  handler 

Handler restores saved registers 

Atomically return to interrupted process/thread 

Restore program counter 

Restore program stack 

Restore processor status word/condition codes 

Switch to user mode 
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Upcall: User-level Event 

Delivery 

Many operating systems provide user programs 

with the ability to receive asynchronous notification 

of event. 

This mechanism is similar to kernel interrupt 

handling, except at the user level. 

It notifies user process of some event that needs to 

be handled right away 

Time expiration 

Interrupt delivery for VM player 

Asynchronous I/O completion (async/await) 

AKA UNIX signal 
43 



Upcalls vs Interrupts 

Signal handlers  interrupt vector 

Signal stack  interrupt stack 

Automatic save/restore registers   transparent 

resume 

Signal masking: signals disabled while in signal 

handler 
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Upcall: Before 
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The state of the user program and 

   signal handler before a UNIX signal. 

UNIX signals behave like processor exception, 

   nut at user level. 



Upcall: During 
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SP: stack pointer 

PC: program counter 

The signal stack stores the state of the hardware registers 

     at the point where the process was interrupted, with room 

     for the signal handler to execute on the signal stack. 



User-Level Virtual Machine: 1/6 

The host OS provides the illusion that the guest 

kernel is running on real hardware. 

The guest kernel provides a guest disk and the 

host kernel simulates a virtual disk as a file on the 

physical disk. 

The host kernel must manage memory protection 

to provide the illusion that the guest kernel is 

managing its own memory protection even though 

it is running with virtual address. 
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User-Level Virtual Machine: 2/6 
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User-Level Virtual Machine: 3/6 

How does the host kernel manage mode transfer 
between guest processes and the guest kernel? 

1. During boot, the host kernel initializes its interrupt 
vector to its own interrupt handlers in host kernel 
memory. 

2. When the host kernel starts the VM, the guest kernel 
starts running as if it is being booted. 

3. The host loads the guest bootloader from the virtual disk  
and starts it running. 

4. The guest bootloader loads the guest kernel from the 
virtual disk into memory and starts it running. 

5. The guest kernel initializes its interrupt vector table to 
point to the guest interrupt handlers. 
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User-Level Virtual Machine: 4/6 

Continue from the previous slide: 

6. The guest kernel loads a process from the virtual disk 

into guest memory. 

7. To start a process, the guest kernel issues instruction to 

resume execution at user level. Because changing the 

privilege level is a privileged operation, this instruction 

traps into the host kernel. 

8. The host kernel simulates the requested mode transfer 

as if the processor had directly executed it. 
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User-Level Virtual Machine: 5/6 

How does the host kernel manage system call by the 

guest kernel? 

1. When the guest kernel executes a system call, this causes 

a trap into the host kernel. 

2. The host kernel saves the instruction counter, processor 

status register, and user stack pointer on the interrupt 

stack of the guest kernel. 

3. The host kernel transfers control to the guest kernel at 

the beginning of the interrupt handler, but with the 

guest kernel running in user mode. 

4. The guest kernel performs the system call – saving user 

states and checking arguments. 
51 



User-Level Virtual Machine: 6/6 

Continue from the previous slide: 

5. When the guest kernel attempts to return from the 

system call back to user level, this causes a processor 

exception, dropping back to the host kernel. 

6. The host kernel can restore the state of the user process, 

running at user level, as if the guest OS had been able to 

return there directly. 
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The End 


