
1

The Kernel Abstraction

Spring 2019

I don’t know what the programming language

of the year 2000 will look like, but I know it

will be called FORTRAN.

Charles Anthony Richard Hoare

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.

 Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

Booting / Initial Program Loader

2

When a computer is powered up,

 the booting procedure starts.

A small record on the boot device

 is read (by the BIOS).

This small record may load more

 records from the boot device,

 making a larger “program”.

Then, this program executes,

 maybe loading more modules into memory.

This program may clear memory, checking

 for available devices, etc.

Moreover, the kernel is loaded into memory.

 When the kernel starts running, interrupts are enabled.

Remember: OS is an interrupt-driven program.

3

Dual-Mode Operation

Modern CPUs have two execution modes: the
user mode and the supervisor (or system, kernel,
privileged) mode, controlled by a mode bit.

The OS runs in the supervisor mode and all
user programs run in the user mode.

Some instructions that may do harm to the OS
(e.g., I/O and CPU mode change) are privileged
instructions. Privileged instructions, for most
cases, can only be used in the supervisor model.

When execution switches to the OS (resp., a
user program), execution mode is changed to
the supervisor (resp., user) mode.

Hardware Support:

Dual-Mode Operation 1/2

Kernel mode

Execution with the full privileges of the hardware

Read/write to any memory, access any I/O device,

read/write any disk sector, send/read any packet

User mode

Limited privileges

Only those granted by the operating system

kernel

On the x86, mode stored in the EFLAGS register.

On the MIPS, mode in the status register.
4

Hardware Support:

Dual-Mode Operation 2/2

Privileged instructions

Available to kernel

Not available to user code

Limits on memory accesses

To prevent user code from overwriting the kernel

Timer

To regain control from a user program in a loop

Safe way to switch from user mode to kernel mode,

and vice versa

5

Mode Switch (User -> Kernel)

From user mode to kernel mode

Interrupts

Triggered by timer, I/O devices, etc.

Exceptions (Trap)

Triggered by unexpected program behavior

Or malicious behavior!

System calls (aka protected procedure call)

Request by a program for kernel to do some

operation on its behalf

Only limited # of very carefully coded entry

points 6

Mode Switch (Kernel -> User)

From kernel mode to user mode

New process/new thread start

Jump to first instruction in program/thread

Return from interrupt, exception, system call

Resume suspended execution

Process/thread context switch

Resume some other process

User-level upcall (UNIX signal)

Asynchronous notification to user program

7

Thought Experiment

How can we implement execution with limited

privilege?

Execute each program instruction in a

simulator

If the instruction is permitted, do the

instruction

Otherwise, stop the process

Basic model in Javascript and other interpreted

languages

How do we go faster?

Run the unprivileged code directly on the CPU! 8

Privileged Instructions

Examples?

What should happen if a user program attempts to

execute a privileged instruction?

9

A Model of a CPU

10

A CPU with Dual-Mode

Operation

11

12

Interrupt and Trap
An event that requires the attention of the OS

is an interrupt. These events include the
completion of an I/O, a keypress, a request for
service, a division by zero and so on.

Interrupts may be generated by hardware or
software.

An interrupt generated by software (i.e.,
division by 0) is referred to as a trap or an
exception.

Modern operating systems are interrupt driven,
meaning the OS is in action only if an interrupt
occurs.

13

What Is Interrupt-Driven?

The OS is
activated by an
interrupt.

The executing
program is
suspended.

Control is
transferred to
the OS.

A program will
be resumed
when the
service
completes.

interrupt

ADD #4, 3

interrupt
 handler

service

kernel

mode switch

kernel mode

user mode

14

System Calls

System calls provide an interface to the services

made available by an operating system.

A system call generates an interrupt (actually a

trap), and the caller is suspended.

Type of system calls:

Process control (e.g., create and destroy processes)

File management (e.g., open and close files)

Device management (e.g., read and write operations)

 Information maintenance (e.g., get time or date)

Communication (e.g., send and receive messages)

Sequence of Steps Involved in

a System Call

15

16

System Call Mechanism: 1/2

load addr. X

syscall 10

X

register

 syscall 10
service routine syscall

parameters

a trap

17

System Call Mechanism: 2/2

A system call generates

a trap.

The executing program

(i.e., caller) is suspended.

Control is transferred to

the OS.

A program will be

resumed when the

system call service

completes.

syscall 10

interrupt
 handler

syscall
services

kernel

mode switch

kernel mode

user mode

Kernel System Call Handler

Locate arguments

 In registers or on user stack

Translate user addresses into kernel addresses

Copy arguments

From user memory into kernel memory

Protect kernel from malicious code evading checks

Validate arguments

Protect kernel from errors in user code

Copy results back into user memory

Translate kernel addresses into user addresses

18

A Problem

19

What’s to keep the process from overwriting the OS kernel?

Or some other process running at the same time?

What’s to keep it from overwriting the disk?

From reading someone else’s files that are stored on disk?

Main Points

Process concept

A process is the OS abstraction for executing a

program with limited privileges

Dual-mode operation: user vs. kernel

Kernel-mode: execute with complete

privileges

User-mode: execute with fewer privileges

Safe control transfer

How do we switch from one mode to the other?

20

Process Abstraction

Process: an instance of a program, running
with limited rights

Thread: a sequence of instructions within a
process

Potentially many threads per process (for
now 1:1)

Address space: set of rights of a process

Memory that the process can access

Other permissions the process has (e.g.,
which system calls it can make, what files it
can access)

 21

Simple Memory Protection

22

Each process has two registers:

 Base: points to the 1st address

 Bound: length of a process

The processor generates a

 physical address.

This address must be larger than

 the value in the Base register

 and smaller than the value of

 Base + Bound.

If a test fails, the hardware raises

 an exception via an interrupt.

There is no “relocation” here.

 Will address this issue later in this semester.

Towards Virtual Addresses

Problems with base and bounds?

Expandable heap and/or stack?

Memory sharing between processes (e.g., shared

memory segments)

Memory fragmentation

What if some memory segments should be

moved around?

23

24

Logical, Virtual, Physical Address

Logical Address: the address generated by the

CPU.

Physical Address: the address seen and used by

the memory unit.

Virtual Address: Run-time binding may generate

different logical address and physical address.

In this case, logical address is also referred to as

virtual address. (Logical = Virtual in this course)

Virtual Addresses

Translation done in

hardware, using a

table.

Table set up by

operating system

kernel.

Each section may be

further cut into small

pages scattering all

over the physical

memory.
25

26

Hardware Timer: 1/2

Because the operating system must maintain the
control over the CPU, it has to prevent a user
program from getting the CPU forever without
calling for system service (i.e., I/O).

Use an interval timer! An interval timer is a
count-down timer.

Before a user program runs, the OS sets the
interval timer to certain value. Once the
interval timer counts down to 0, an interrupt is
generated and the OS can take appropriate
action.

Hardware Timer: 2/2

Hardware device that periodically interrupts the

processor

Returns control to the kernel handler

Interrupt frequency set by the kernel

Not by user code!

Interrupts can be temporarily deferred

Not by user code!

Interrupt deferral crucial for implementing

mutual exclusion

27

Device Interrupts: 1/2

OS kernel needs to communicate with physical

devices

Devices operate asynchronously from the CPU

Polling: Kernel waits until I/O is done

 Interrupts: Kernel can do other work in the meantime

Device access to memory

Programmed I/O: CPU reads and writes to device

Direct memory access (DMA) by device

Buffer descriptor: sequence of DMA’s

E.g., packet header and packet body

Queue of buffer descriptors

Buffer descriptor itself is DMA’ed 28

Device Interrupts: 2/2

How do device interrupts work?

Where does the CPU run after an interrupt?

What is the interrupt handler written in? C?

Java?

What stack does it use?

Is the work the CPU had been doing before the

interrupt lost forever?

If not, how does the CPU know how to resume

that work?

29

How do we take interrupts safely?

Interrupt vector

Limited number of entry points into kernel

Atomic transfer of control

Single instruction to change:

Program counter

Stack pointer

Memory protection

Kernel/user mode

Transparent restartable execution

User program does not know interrupt
occurred

30

Interrupt Vector

Table set up by OS kernel; pointers to code to run

on different events

31

Interrupt Stack: 1/2

Per-processor, located in kernel (not user)

memory

Usually a process/thread has both: kernel and

user stack

Why can’t the interrupt handler run on the stack

of the interrupted user process?

32

Interrupt Stack: 2/2

33

Interrupt Masking

Interrupt handler runs with interrupts off

Re-enabled when interrupt completes

OS kernel can also turn interrupts off

Example: when determining the next process or
thread to run

On x86

CLI (clear the interrupt flag in the EFLAGS):
disable interrupts

STI (set the interrupt flag): enable
interrupts

Only applies to the current CPU (on a
multicore)

34

Interrupt Handlers

Non-blocking, run to completion

Minimum necessary to allow device to take next

interrupt

Any waiting must be limited duration

Wake up other threads to do any real work

Linux: semaphore

Rest of device driver runs as a kernel thread

35

Case Study: MIPS Interrupt/Trap

Two entry points: TLB miss handler, everything else

Save type: syscall, exception, interrupt

and which type of interrupt/exception

Save program counter: where to resume

Save old mode, interruptible bits to status register

Set mode bit to kernel

Set interrupts disabled

For memory faults

Save virtual address and virtual page

Jump to general exception handler 36

Case Study: x86 Interrupt

Save current stack pointer

Save current program counter

Save current processor status word (condition

codes)

Switch to kernel stack; put SP, PC, PSW on stack

Switch to kernel mode

Vector through interrupt table

Interrupt handler saves registers it might clobber

37

x86 Registers

38

80286 introduced 4 segments:

 CS – code segment

 DS – data segment

 SS – stack segment

 ES – extra (E) segment

 FS – pointer to more

 extra data.

 F comes after E

 GS – pointer to more

 extra data.

 G comes after F

EFLAGS – a 32-bit register

 for storing status

 of processor

Before Interrupt

39

SS:ESP stack pointer

CS:EIP instructor pointer

 (program counter)

During Interrupt

40

1. An interrupt occurs

2. The hardware has jumped to the interrupt handler

3. The handler saves the user context on the kernel

 interrupt stack and changes the program counter

 in kernel memory.

2

3

After Interrupt

41

Why is the stack pointer saved twice on the interrupt stack?

(Hint: is it the same stack pointer?)

At end of handler

Handler restores saved registers

Atomically return to interrupted process/thread

Restore program counter

Restore program stack

Restore processor status word/condition codes

Switch to user mode

42

Upcall: User-level Event

Delivery

Many operating systems provide user programs

with the ability to receive asynchronous notification

of event.

This mechanism is similar to kernel interrupt

handling, except at the user level.

It notifies user process of some event that needs to

be handled right away

Time expiration

Interrupt delivery for VM player

Asynchronous I/O completion (async/await)

AKA UNIX signal
43

Upcalls vs Interrupts

Signal handlers interrupt vector

Signal stack interrupt stack

Automatic save/restore registers transparent

resume

Signal masking: signals disabled while in signal

handler

44

Upcall: Before

45

The state of the user program and

 signal handler before a UNIX signal.

UNIX signals behave like processor exception,

 nut at user level.

Upcall: During

46

SP: stack pointer

PC: program counter

The signal stack stores the state of the hardware registers

 at the point where the process was interrupted, with room

 for the signal handler to execute on the signal stack.

User-Level Virtual Machine: 1/6

The host OS provides the illusion that the guest

kernel is running on real hardware.

The guest kernel provides a guest disk and the

host kernel simulates a virtual disk as a file on the

physical disk.

The host kernel must manage memory protection

to provide the illusion that the guest kernel is

managing its own memory protection even though

it is running with virtual address.

47

User-Level Virtual Machine: 2/6

48

User-Level Virtual Machine: 3/6

How does the host kernel manage mode transfer
between guest processes and the guest kernel?

1. During boot, the host kernel initializes its interrupt
vector to its own interrupt handlers in host kernel
memory.

2. When the host kernel starts the VM, the guest kernel
starts running as if it is being booted.

3. The host loads the guest bootloader from the virtual disk
and starts it running.

4. The guest bootloader loads the guest kernel from the
virtual disk into memory and starts it running.

5. The guest kernel initializes its interrupt vector table to
point to the guest interrupt handlers.

49

User-Level Virtual Machine: 4/6

Continue from the previous slide:

6. The guest kernel loads a process from the virtual disk

into guest memory.

7. To start a process, the guest kernel issues instruction to

resume execution at user level. Because changing the

privilege level is a privileged operation, this instruction

traps into the host kernel.

8. The host kernel simulates the requested mode transfer

as if the processor had directly executed it.

50

User-Level Virtual Machine: 5/6

How does the host kernel manage system call by the

guest kernel?

1. When the guest kernel executes a system call, this causes

a trap into the host kernel.

2. The host kernel saves the instruction counter, processor

status register, and user stack pointer on the interrupt

stack of the guest kernel.

3. The host kernel transfers control to the guest kernel at

the beginning of the interrupt handler, but with the

guest kernel running in user mode.

4. The guest kernel performs the system call – saving user

states and checking arguments.
51

User-Level Virtual Machine: 6/6

Continue from the previous slide:

5. When the guest kernel attempts to return from the

system call back to user level, this causes a processor

exception, dropping back to the host kernel.

6. The host kernel can restore the state of the user process,

running at user level, as if the guest OS had been able to

return there directly.

52

53

The End

