
1

The Programming Interface

Spring 2019

I'm afraid that the following syllogism may be used by some in the future.

Turing believes machines think
Turing lies with men

Therefore machines do not think

Alan Turing

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

What Functions an OS Can
Provide Applications?

q Process Management: fork, wait, exec
q Performing I/O: open, read, write, close
q Thread Management: create, terminate, join, etc.
q Memory Management: Can a process ask for more (or

less) memory space? Can it share the same physical memory
region with other processes?

q File System and Storage: How does the user name and
organize their data? How does a process store the user’s data
persistently?

q Networking and Distributed Systems: How do
processes communicate with processes on other computer?

q Graphics and Window Management
q Authentication and Security. 2

Operating System Functionality

qA functional interface for process management
and I/O can be described with a dozen system
calls, and the rest of the system call interface with
another dozen.

3

Tradeoff
qAs long as the OS provides an interface, where

each function is implemented is up to the OS,
based on a tradeoff between flexibility,
reliability, performance, and safely.

4

The kernel system call interface
can be seen as a “thin waist.”
enabling independent evolution
of applications and hardware.

Shell
qA shell is a job control system

ØAllows programmer to create and manage a set of
programs to do some task

ØWindows, MacOS, Linux all have shells
qEach command issued create a process to execute it.
qExample: to compile a C program

Øcc –c file1.c
Øcc –c file2.c
Øln –o program file1.o file2.o

qThree processes are created, one after the other: for
the 1st cc, the 2nd cc, and the ln.

5

Windows CreateProcess
qSystem call to create a new process to run a

program
ØCreate and initialize the process control block (PCB) in

the kernel
ØCreate and initialize a new address space
ØLoad the program into the address space
ØCopy arguments into memory in the address space
Ø Initialize the hardware context to start execution at

``start'’
Ø Inform the scheduler that the new process is ready to

run

6

Windows CreateProcess API
(Simplified)

if (!CreateProcess(
NULL, // No module name (use command line)
argv[1], // Command line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
0, // No creation flags
NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure
&pi) // Pointer to PROCESS_INFORMATION

// structure
)

7

UNIX Process Management

qUNIX fork – system call to create a copy of the
current process, and start it running
ØNo arguments!

qUNIX exec – system call to change the program
being run by the current process

qUNIX wait – system call to wait for a process to
finish

qUNIX signal – system call to send a notification
to another process

8

Implementing UNIX fork

Steps to implement UNIX fork
ØCreate and initialize the process control block

(PCB) in the kernel
ØCreate a new address space
ØInitialize the address space with a copy of the entire

contents of the address space of the parent
ØInherit the execution context of the parent (e.g.,

any open files)
ØInform the scheduler that the new process is ready

to run

9

10

fork() Return Values

§ A negative value means the creation of a child
process was unsuccessful.

§ A zero means the process is a child.
§ Otherwise, fork() returns the process ID of

the child process. The ID is of type pid_t.
§ Function getpid() returns the process ID of

the caller.
§ Function getppid() returns the parent’s

process ID. If the calling process has no
parent, getppid() returns 1.

11

Before Executing fork()

main()
{

int a, b;
pid_t pid
fork();
pid = …;
……

}

parent

12

After Executing fork()

main()
{

int a, b;
pid_t pid;
fork();
pid = …;
……

}

parent
main()
{

int a, b;
pid_t pid;
fork();
pid = …;
……

}

child

in different address spaces

two independent and separate address spaces

13

fork() : A Typical Use
void child(void)
{
int i;
for (i=1; i<=10; i++)
printf(“ Child:%d\n”, i);

printf(“Child done\n”);
}

void parent(void)
{
int i;
for (i=1; i<=10; i++)
printf(“Parent:%d\n”, i);

printf(“Parent done\n”);
}

main(void)
{
pid_t pid;

if ((pid=fork()) < 0)
printf(“Oops!”);

else if (pid == 0)
child();

else // pid > 0
parent();

}

we use printfs here to save space.

14

Before the Execution of fork()

main(void)
{
pid = fork();
if (pid == 0)
child();

else
parent();

}

void child(void)
{ …… }

void parent(void)
{ …… }

pid = ?
parent

15

After the Execution of fork()
1/2

main(void)
{
pid = fork();
if (pid == 0)
child();

else
parent();

}

void child(void)
{ …… }

void parent(void)
{ …… }

pid=123

parent
main(void)
{
pid = fork();
if (pid == 0)
child();

else
parent();

}

void child(void)
{ …… }

void parent(void)
{ …… }

pid = 0

child

in two different address spaces

16

After the Execution of fork()
2/2

main(void)
{
pid = fork();
if (pid == 0)
child();

else
parent();

}

void child(void)
{ …… }

void parent(void)
{ …… }

pid=123
parent

main(void)
{
pid = fork();
if (pid == 0)
child();

else
parent();

}

void child(void)
{ …… }

void parent(void)
{ …… }

pid = 0
child

Implementing UNIX exec

qSteps to implement UNIX exec
ØLoad the program into the current address

space
ØCopy arguments into memory in the address

space
ØInitialize the hardware context to start

execution at ``start''

17

18

The exec() System Calls

qA newly created process may run a different program
rather than that of the parent.

qThis is done using the exec system calls. We will
only discuss execvp():

q int execvp(char *file, char *argv[]);
Øfile is a char array that contains the name of an

executable file. Depending on your system settings, you
may need the ./ prefix for files in the current directory.

Øargv[] is the argument passed to your main program
Øargv[0] is a pointer to a string that contains the

program name
Øargv[1], argv[2], … are pointers to strings that

contain the arguments

19

A Mini-Shell: 1/3
void parse(char *line, char **argv)
{

while (*line != '\0') { // not EOLN
while (*line == ' ' || *line == '\t' || *line == '\n')

*line++ = '\0'; // replace white spaces with 0
*argv++ = line; // save the argument position
while (*line != '\0' && *line ! =' '

&& *line!='\t' && *line != '\n')
line++; // skip the argument until ...

}
*argv = '\0'; // mark the end of argument list

}

c p t h i s . c t h a t . c \0

c p \0 t h i s . c \0 t h a t . c \0

line[]

line[]

\0
argv[]

20

A Mini-Shell: 2/3
void execute(char **argv)
{

pid_t pid;
int status;
if ((pid = fork()) < 0) { // fork a child process

printf("*** ERROR: forking child process failed\n");
exit(1);

}
else if (pid == 0) { // for the child process:

if (execvp(*argv, argv) < 0) { // execute the command
printf("*** ERROR: exec failed\n");
exit(1);

}
}
else { // for the parent:

while (wait(&status) != pid) // wait for completion
;

}
}

21

A Mini-Shell: 3/3
void main(void)
{

char line[1024]; // the input line
char *argv[64]; // the command line argument

while (1) { // repeat until done
printf("Shell -> "); // display a prompt
gets(line); // read in the command line
printf("\n");
parse(line, argv); // parse the line
if (strcmp(argv[0], "exit") == 0) // is it an "exit"?

exit(0); // exit if it is
execute(argv); // otherwise, execute the command

}
}

Don’t forget that gets() is risky! Use fgets() instead.

UNIX I/O
qUniformity

ØAll operations on all files, devices use the same
set of system calls: open, close, read, write

qOpen before use
ØOpen returns a handle (file descriptor) for use

in later calls on the file
qByte-oriented
qKernel-buffered read/write
qExplicit close

ØTo garbage collect the open file descriptor
22

UNIX File System Interface

qUNIX file open is a Swiss Army knife:
ØOpen the file, return file descriptor
ØOptions:

üif file doesn’t exist, return an error
üIf file doesn’t exist, create file and open it
üIf file does exist, return an error
üIf file does exist, open file
üIf file exists but isn’t empty, nix it then open
üIf file exists but isn’t empty, return an error
ü…

23

24

The End

