
1

Concurrency

Spring 2019
An algorithm must be seen to be believed.

Donald Knuth

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

Motivation
qOperating systems (and application programs)

often need to be able to handle multiple things
happening at the same time
ØProcess execution, interrupts, background tasks,

system maintenance
qHumans are not very good at keeping track of

multiple things happening simultaneously; but we
do things concurrently very frequently.

qThreads are an abstraction to help bridge this gap

2

Why Concurrency?

qServers
ØMultiple connections handled simultaneously

qParallel programs
ØTo achieve better performance

qPrograms with user interfaces
ØTo achieve user responsiveness while doing

computation
qNetwork and disk bound programs

ØTo hide network/disk latency
3

Definitions

qA thread is a single execution sequence that
represents a separately schedulable task
ØSingle execution sequence (Sequential): familiar

programming model
ØSeparately schedulable: OS can run or suspend

a thread at any time
qProtection is an orthogonal concept

ØCan have one or many threads per protection
domain

4

Threads in the Kernel and at
User-Level

qMulti-Threaded Kernel
ØMultiple threads, sharing kernel data structures,

capable of using privileged instructions
qMultiprocess Kernel

ØMultiple single-threaded processes
ØSystem calls access shared kernel data structures

qMultiple Multi-Threaded User Processes
ØEach with multiple threads, sharing same data

structures, isolated from other user processes

5

Thread Abstraction
qInfinite number of processors
qThreads execute with variable speed

ØPrograms must be designed to work with any
schedule

6

Programmer vs. Processor View

But, situation can be worse, because higher-level statements are not atomic.
Each higher-level statement is translated to machine instruction,

and interrupt can happen between two instructions.
7

higher-level language
statements are not atomic

Machine Instruction View

But, situation can be worse, because higher-level statements are not atomic.
Each higher-level statement is translated to machine instruction,

and interrupt can happen between two instructions.

8

Programmer’s View Machine’s View Thread 1 Thread 2

.....
x = x + 1 LOAD x LOAD x

ADD #1 LOAD x
SAVE x ADD #1

y = y + x LOAD y SAVE x ADD #1
ADD x SAVE x
SAVE y

..... what is the value of x here?

Possible Executions

9

Thread Operations
qthread_create(thread, func, args)

ØCreate a new thread to run func(args)
ØOS/161: thread_fork

qthread_yield()
ØRelinquish processor voluntarily
ØOS/161: thread_yield

qthread_join(thread)
Ø In parent, wait for forked thread to exit, then return
ØOS/161: assignment 1 (we do not do this assignment)

qthread_exit()
ØQuit thread and clean up, wake up joiner if any
ØOS/161: thread_exit() 10

Example: threadHello
#define NTHREADS 10
thread_t threads[NTHREADS];
main()
{

for (i = 0; i < NTHREADS; i++)
thread_create(&threads[i], &go, i);

for (i = 0; i < NTHREADS; i++) {
exitValue = thread_join(threads[i]);
printf("Thread %d returned with %ld\n", i, exitValue);

}
printf("Main thread done.\n");

}
void go (int n)
{

printf("Hello from thread %d\n", n);
thread_exit(100 + n);

}

11

threadHello: Example Output

qWhy must “thread returned”
print in order?

qWhat is maximum # of threads
running when thread 5 prints
hello?

qMinimum?
qAre you certain about your

answer?

12

Fork/Join Concurrency

qThreads can create children, and wait for their
completion

qData only shared before fork/after join
qExamples:

ØWeb server: fork a new thread for every new
connection
üAs long as the threads are completely

independent
ØMerge sort
ØParallel memory copy

13

bzero with fork/join
Concurrency

void blockzero (unsigned char *p, int length)
{

int i, j;
thread_t threads[NTHREADS];
struct bzeroparams params[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.

for (i = 0, j = 0; i < NTHREADS; i++, j += length/NTHREADS) {
params[i].buffer = p + i * length/NTHREADS;
params[i].length = length/NTHREADS;
thread_create(&(threads[i]), &go, ¶ms[i]);

}
for (i = 0; i < NTHREADS; i++) {

thread_join(threads[i]);
}

}

14Clear a block of memory to zero
Each thread clears a portion of the memory block

Thread Data Structures

15

Thread Lifecycle

16

Implementing Threads: Roadmap

qKernel threads
ØThread abstraction only available to kernel
ØTo the kernel, a kernel thread and a single

threaded user process look quite similar
qMultithreaded processes using kernel threads

(Linux, MacOS)
ØKernel thread operations available via syscall

qUser-level threads
ØThread operations without system calls

17

Multithreaded OS Kernel

18

A multi-threaded kernel with three kernel threads
and two single-threaded user-level processes.

Each kernel thread has its own TCB and
and its own stack.

Each user process has a stack at user-level for
executing user code and a kernel interrupt
stack for executing interrupts and system calls.

Multithreaded User Processes

19

A multi-threaded kernel with three kernel
threads and two user-level processes,
each with two threads.

Each user-level thread has a user-level stack
and an interrupt stack in the kernel for
executing interrupts and system calls.

Implementing Threads
qthread_create(func, args)

ØAllocate thread control block
ØAllocate stack
ØBuild stack frame for base of stack (stub)
ØPut func, args on stack
ØPut thread on ready list
ØWill run sometime later (maybe right away!)

qstub(func,args)
ØCall (*func)(args)
ØIf return, call thread_exit()

20

Thread Creation (Pseudo-Code)

21

thread_create(thread_t *thread, void (*func)(int), int arg)
{

TCB *tcb = new TCB(); // allocate TCB and stack

thread->tcb = tcb;
tcb->stack_size = INITIAL_STACK_SIZE;
tcb->stack = new Stack(INITIAL_STACK_SIZE);

tcb->sp = tcb->stack + INITIAL_STACK_SIZE; // initialize registers
tcb->pc = stub;

*(tcb->sp) = arg; // push the argument and function on to stack
tcb->sp--;
*(tcb->sp) = func;
tcb->sp--;

thread_dummySwitchFrame(tcb); // to be discussed later
tcb->state = READY;
readyList.add(tcb);

}

void stub(void (*func)(int), int arg)
{

(*func)(arg); // execute the function func()
thread_exit(0); // if func() does not call exit, call it here

}

Thread Deletion: 1/3

qTwo steps are needed to delete the thread when
thread_exit is called.
ØRemove the thread from the ready list so that it

will never run again.
ØFree the per-thread state allocated for the

thread.
ØWhat if an interrupt occurs before

the thread finishes de-allocating its
state à memory leak!

22

Thread Deletion: 2/3

qWho is responsible to free a thread from its state? The
thread itself?
ØIf the thread frees its state, it does not

have a stack to finish its code in
thread_exit.

ØWhat if an interrupt occurs just after
the running thread’s stack has been de-
allocated? If the context switch code tries to
save the current’s state, it will be writing to de-
allocated memory, which may have been allocated
to other thread for some other data structure.

23

Thread Deletion: 3/3

qSolution:

ØFreeing a thread’s state has to be done by some
other thread. On exit, the thread…

1) transitions to the FINISHED state

2) moves its TCB from the ready list to the
finished list so that the scheduler will never
run it.

3) Once the finished thread is no longer
running, it is safe for some other thread to
free the state of the thread.

24

Thread Context Switch

qVoluntary
Øthread_yield
Øthread_join (if child is not done yet)

qInvoluntary
ØInterrupt or exception
ØSome other thread has higher priority

25

Voluntary Thread Context
Switch

qSave registers on old stack
qSwitch to new stack, new thread
qRestore registers from new stack
qReturn
qExactly the same with kernel threads or user

threads
ØOS/161: thread switch is always between kernel

threads, not between user process and kernel
thread

26

Thread Switch x86 (Pseudo-Code)

27

void thread_switch(oldThreadTCB, newThreadTCB)
{

pushad; // push general register values
// onto the old stack

oldThreadTCB->sp = %esp; // save the old thread’s SP
%esp = newThreadTCB->sp; // switch to the new stack
popad; // pop register values from

// the new stack
return;

}

This function enters as oldThread, but returns as newThread.
It returns with newThread’s registers and stack

Thread Yield x86 (Pseudo-Code)

28

void thread_yield()
{

TCB *chosenTCB, *finishedTCB;

disableInterrupts(); // disable interrupts
chosenTCB = readyList.getNextThread(); // choose the next
if (chosenTCB == NULL) {

// nothing to run. returns to the original thread
}
else { // move running thread onto the ready list

runningThread->state = READY;
readyList.add(runningThread);
thread_switch(runningThread, chosenTCB); // switch to new
runningThread->state = running;

}
// delete any threads on the finished list

while (finishedTCB = finishedList->getNextThread()) != NULL) {
delete finishedTCB->stack;
delete finishedTCB;

}
enableInterrupts();

}

Thread Switch Frame x86

29

void thread_dummySwitchFrame(newThread)
{

*(tcb->sp) = stub;
tcb->sp—
tcb->sp -= SizeOfPopad;

}

thread_create must put a dummy frame at the top of its stack:
the return PC and space for pushad to have stored a copy of registers.

Therefore, when someone switches to a newly created thread,
the last two lines of thread_switch work correctly.

OS/161 switchframe_switch
/* a0: old thread stack pointer */
/* a1: new thread stack pointer */

/* Allocate stack space for 10
registers. */
addi sp, sp, -40

/* Save the registers */
sw ra, 36(sp)
sw gp, 32(sp)
sw s8, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

/* Store old stack pointer in old
thread */
sw sp, 0(a0)

/* Get new stack pointer from new thread */
lw sp, 0(a1)
nop /* delay slot for load */

/* Now, restore the registers */
lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s8, 28(sp)
lw gp, 32(sp)
lw ra, 36(sp)
nop /* delay slot for load */

/* and return. */
j ra
addi sp, sp, 40 /* in delay slot */

30

x86 switch_threads
Save caller’s register state
NOTE: %eax, etc. are

ephemeral
pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread,
stack)

mov thread_stack_ofs, %edx
Save current stack pointer to

old thread's stack, if any.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes
currentThread

movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register
state.

popl %edi
popl %esi
popl %ebp
popl %ebx
ret

31

A Subtlety

qthread_create puts new thread on ready list
qWhen it first runs, some thread calls
switchframe
ØSaves old thread state to stack
ØRestores new thread state from stack

qSet up new thread’s stack as if it had saved its
state in switchframe
Ø“returns” to stub at base of stack to run func

32

Involuntary Thread/Process Switch

qTimer or I/O interrupt
ØTells OS some other thread should run

qSimple version (OS/161)
ØEnd of interrupt handler calls switch()
ØWhen resumed, return from handler resumes

kernel thread or user process
ØThus, processor context is saved/restored twice

(once by interrupt handler, once by thread
switch)

33

Faster Thread/Process Switch

qWhat happens on a timer (or other) interrupt?
ØInterrupt handler saves state of interrupted

thread
ØDecides to run a new thread
ØThrow away current state of interrupt handler!
ØInstead, set saved stack pointer to trapframe
ØRestore state of new thread
ØOn resume, pops trapframe to restore

interrupted thread

34

Multithreaded User Processes
1/3

qUser thread = kernel thread (Linux, MacOS)
ØSystem calls for thread fork, join, exit (and

lock, unlock,…)
ØKernel does context switch
ØSimple, but a lot of transitions between user

and kernel mode

35

Multithreaded User Processes
2/3

qGreen threads (early Java)
ØUser-level library, within a single-threaded

process
ØLibrary does thread context switch
ØPreemption via upcall/UNIX signal on timer

interrupt
ØUse multiple processes for parallelism

üShared memory region mapped into each
process

36

Multithreaded User Processes
3/3

qScheduler activations (Windows 8)
ØKernel allocates processors to user-level library
ØThread library implements context switch
ØThread library decides what thread to run next

qUpcall whenever kernel needs a user-level
scheduling decision
ØProcess assigned a new processor
ØProcessor removed from process
Ø System call blocks in kernel

37

38

The End

