
1

Synchronization

Spring 2019

If you want more effective programmers, 
you will discover that they should not waste their time debugging, 

they should not introduce the bugs to start with.

Edsger W. Dijkstra

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene. 



Synchronization Motivation

qWhen threads concurrently read/write shared 
memory, program behavior is undefined
ØTwo threads write to the same variable; which 

one should win?
qThread schedule is non-deterministic

ØBehavior changes when re-run program
qCompiler/hardware instruction reordering
qMulti-word operations are not atomic

2



Three Reasons: 1/4 

qProgram execution depends on the 
possible interleaving of threads’ access 
to shared data.
ØYou learned in Concurrent Computing that this 

is the main cause of race conditions.
ØDepending on the execution order, the result of 

the shared data may become unpredictable.
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Three Reasons: 2/4 
qProgram execution can be 

nondeterministic.
q Interrupts can happen any time and anywhere.  As a 

result, a thread can be switched out of the CPU by the 
scheduler in an unpredictable way.
ØA multithreaded program can potentially have 

different interleaving execution every time when it 
runs.

ØJim Gray in his 1998 ACM Turing Award talk 
coined the term Heisenbugs for bugs that 
disappear or change behavior when you try to 
examine them.  Bohr bugs are deterministic and 
general much easier to diagnose.
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Three Reasons: 3/4 

qCompilers and processor hardware can 
reorder instructions.

qModern compilers and hardware reorder instructions 
to improve performance.

qFor higher-level language statements that are 
“independent” of each other, compilers are free to 
order the execution of these statements.  Only those 
statements that are dependent of each other are 
executed in the needed order.  For example, c = 
a+b; x = c*100; will be executed in the specified 
order. However, c = a+b; x = m*n; are not 
guaranteed to be executed in the specified order.
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Three Reasons: 4/4

Thread 1

p = someComputation();
pInitialized = true; 

Thread 2

while (!pInitialized) 
; 

q = someFunction(p); 
if (q != someFunction(p))

panic
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Because these two statements are
independent of each other, compiler or
hardware may execute the second
statement prior to the first.

Suppose the order or the two statements in 
Thread 1 are changed.

Before the value of p is obtained properly, 
Thread 2 could start its execution.

In this case, Thread 2 could use an unexpected
value of p to compute q.



Too Much Milk Example: 1/6
q Alice and Bob are sharing an apartment.  Alice arrives 

home in the afternoon, looks in the fridge and finds that 
there is no milk.  So, she leaves for the grocery to buy milk.

q After she leaves, Bob arrives, he also finds that there is no 
milk and goes to buy milk.

q At the end both buy milk and end up with too much milk.
Time Alice Bob

5:00 Arrive home
5:05 Look in fridge; no milk
5:10 Leave for grocery
5:15 Arrive home
5:20 Look in fridge; no milk
5:25 Buy milk Leave for grocery
5:30 Arrive home; put milk in fridge Buy milk
5:40 Arrive home; put milk in fridge

Too much milk 7



Too Much Milk Example: 2/6
q Alice and Bob are looking for a solution to ensure that:

ØOnly one person buys milk, when there is no milk.
ØSomeone always buys milk, when there is no milk.

q They will communicate by leaving (signed) notes on the 
door of the fridge.  Note that they do not see each 
other.
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Alice                                    Bob
if (no note) then if (no note) then

if (no milk) then if (no milk) then
leave note               leave note
buy milk                 buy milk
remove note              remove note

end if end if
end if end if

What if Alice and Bob come home at the same time?



Too Much Milk Example: 3/6
q Each of Alice and Bob first leaves note, checks the other’s 

note.  If no note, checks whether there is milk.  If there is 
no milk, then busy milk.  Finally, remove his/her own note.  

q Note that they do not see each other.

Alice                                    Bob
leave note Alice leave note Bob
if (no note Bob) then if (no note Alice) then

if (no milk) then if (no milk) then
buy milk                 buy milk

end if end if
end if end if
remove note Alice remove note Bob

What if Alice and Bob come home and leave note at the same time? No milk!
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Too Much Milk Example: 4/6
q Bob leaves note and repeatedly check Alice’s note until 

Alice’s note is not on fridge.  
q Once Bob finds Alice’s note is not there, he check for milk.  

If there is no milk, Bob buys milk.
q Note that they do not see each other.

Alice                                    Bob
leave note Alice leave note Bob
if (no note Bob) then while (note Alice) do

nothing;
if (no milk) then if (no milk) then
buy milk                buy milk

end if end if
end if
remove note Alice remove note Bob

We have to assume: between the time Alice removes her note, and the time she leaves
a new note next time, Bob must be able to find out that Alice’s note has been removed.

Without this assume, they never buy milk.  Find an execution for this scenario. 10

asymmetric!



Too Much Milk Example: 5/6
q The fridge has four slots for posting notes.  Alice uses A1

and A2, and Bob uses B1 and B2.
q If Alice (resp., Bob) finds that there is no note labelled B1 

(resp., A1 ) on the fridge’s door, then it is Alice (resp., Bob) 
responsibility to buy milk.

q Otherwise, when both A1 and B1 are present, a decision is 
made according to the notes A2 and B2.

q If both A2 and B2  are present or if neither of them is 
present than it is Bob’s responsibility to by milk.

q Otherwise, it is Alice’s responsibility.
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A1 X X A1 A2 B1 A1 B1B2

B1X X A1 B1 A1 B1B2A2

The six possible configurations
of the notes on the fridge’s door

Alice’s turn

Bob’s turn



Too Much Milk Example: 6/6
q The fridge has four slots for posting notes.  Alice uses A1

and A2, and Bob uses B1 and B2.
q This is a correct solution.  Study and prove it.

Alice                                    Bob
leave note A1 leave note B1
if (B2) then if (no A2) do

leave note A2 leave note B2
else                                           else

remove note A2 remove note B2
end if /* Alice gives priority */   end if /* giving to Alice */

/* to Bob in buying milk*/ 

while B1 and while A1 and
((A2 and B2 ) or ((A2 and no B2 ) or
(no A2 and no B2 )) do (no A2 and B2 )) do

nothing;                     nothing;
if (no milk) then if (no milk) then

buy milk                     buy milk
end if end if
remove note A1     remove note B1
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Lessons

qSolution is complicated
Ø“obvious” code often has bugs

qYou may replace Alice and Bob with two 
computers and the fridge with a file.

qModern compilers/architectures reorder 
instructions
ØMaking reasoning even more difficult

qGeneralizing to many threads/processors
ØEven more complex: see Peterson’s algorithm 
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Definitions
Race condition: output of multiple threaded program 

that manipulates a shared resource concurrently depends 
on the order of operations among threads

Mutual exclusion: only one thread does a particular 
thing at a time
ØCritical section: piece of code that only one thread 

can execute at once  
Lock: prevent someone from doing something

ØLock before entering critical section, before accessing 
shared data

ØUnlock when leaving, after done accessing shared data
ØWait if locked (all synchronization involves waiting!)

14



Roadmap

Shared Objects

Synchronization Variables

Atomic  Instructions

Hardware

Interrupt Disable

Bounded Buffer

Multiple Processors

Semaphores Locks

Test-and-Set

Barrier

Hardware Interrupts

Condition Variables

Concurrent Applications

Concurrent apps
built using shared 

objects.

Shared objects
built using 

synchronization 
variables

Synchronization 
variables (often)

built using atomic 
instructions

Atomic and act 
as memory 

barrier
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Locks
qLock::acquire

ØWait until lock is free, then take it
qLock::release

ØRelease lock, waking up anyone waiting for it

1. At most one lock holder at a time (Mutual 
exclusion) 

2. If no one holding, acquire gets lock (Progress) 
3. If all lock holders finish and no higher 

priority waiters, waiter eventually gets lock
Ø Need not be FIFO! Properties of a solution 

to the “Critical Section” 
problem
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Question: Why only 
Acquire/Release

qSuppose we add a method to a lock, to ask if the 
lock is free.   Suppose it returns true.  Is the lock:
ØFree?
ØBusy?
ØDon’t know?

when testing the return value

In security lingo, leads 
to a TOCTOU error.  

“Time of check to time 
of use”
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Lock Example: malloc/free
char *malloc (n) {

heaplock.acquire();
p = allocate memory
heaplock.release();
return p;

}

void free(char *p) {
heaplock.acquire();
put p back on free list
heaplock.release();

}
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Rules for Using Locks
qLock is initially free
qAlways acquire before accessing shared data 

structure. 
qAlways release after finishing with shared data

ØEnd of procedure!
ØOnly the lock holder can release
ØDO NOT throw lock for someone else to release

qNever access shared data without lock
ØDanger!

qDon’t put shared objects on the stack. Why?
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Will this code work? 1/2

1. if (p == NULL) {
2.      lock.acquire();
3.      if (p == NULL) {
4.          p = newP();  
5.      }
6.      lock.release();
7. }
8. use p->field1

newP() 
{

p = malloc(sizeof(p));
p->field1 = …
p->field2 = …
return p;

}

20

p is a shared variable



Will this code work? 2/2

21

Thread 1 Thread 2
1.  if (p == NULL) {

2.    lock.acquire();

3.    if (p == NULL) {

4.      p = malloc(..);

1.  if (p == NULL) { }

2.  p->field1;

p->field1;

p->field2;

6.    lock.release();

8.  p->field1;

1. if (p == NULL) {
2.      lock.acquire();
3.      if (p == NULL) {
4.          p = newP();  
5.      }
6.      lock.release();
7. }
8. use p->field1

lock.acquire();
if (p == NULL) {

p = newP();  
}

lock.release();

lock.acquire();
if (p == NULL) {

p = newP();  
}

lock.release();

ATOM
IC W

RT T
B

ATOM
IC W

RT TA



Example Shared Object Using Locks
Bounded Buffer

tryget() {
item = NULL;
lock.acquire();
if (front < tail) {
item = buf[front%MAX];

front++;
}
lock.release();
return item;

}

tryput(item) {
lock.acquire();
if ((tail–front) < size) {
buf[tail % MAX] = item;
tail++;

}
lock.release();

}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

X X

tailfront

front < tail               =>  data available
tail = front + size    => full
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int front = .., tail = …; 



The Milk Problem Revisited
qAlice and Bob calls BuyMilkIfNeeded() to 

determine whether she or he should buy milk.
qProve that

ØOnly one person buys milk when there is no milk
ØSomeone always buys milk when there is no milk
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BuyMilkIfNeeded()
{

lock.acquire();
if (no milk) {

buy milk;
}
lock.release();

}

Buying milk is mutually exclusive,
because only one person should buy.

Both have to check “milk” in a mutually
exclusive way.

If no milk, then buy it!

Can “buy milk” be moved outside 
of the critical section?



Condition Variables

qWaiting inside a critical section
ØCalled only when holding a lock

qOperations
ØWait - atomically release lock and relinquish 

processor
üReacquire the lock when wakened

ØSignal - wake up a waiter, if any
ØBroadcast - wake up all waiters, if any

Not UNIX 
wait() and 
signal()
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Mesa vs. Hoare semantics

qMesa
ØSignal puts waiter on ready list
ØSignaler keeps lock and processor

qHoare
ØSignal gives processor and lock to waiter
ØWhen waiter finishes, processor/lock given back 

to signaler
ØNested signals possible (i.e., cascading release)!
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Hoare vs. Mesa: 1/2

mutex::acquire();
if (count >= MAX) 

wait(notFull, mutex);
buf[count]=‘a’;
count++;   
signal(notEmpty);

Mutex::release();

mutex::acquire();
if (count == 0) 

wait(notEmpty, mutex);
ch=buf[count];
count--;
signal(notFull);

Mutex::release;

Producer Consumer
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Replace the if with a while for the Mesa type

What if the above code is run under the Mesa type? Problem!!!



Hoare vs. Mesa: 2/2
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P1 P2 P3 P4 C1 Count

0
Add 1 item 1

Add 1 item 2
acquire 2
wait 2

acquire 2
Take 1 item 1
signal 1
release 1

Add 1 item 2
No space! 2

Under Mesa the signaler continuesBy the time P3 gets the monitor and 
runs again, the free spot has already 
been taken by P4.

buffer size = 2

Under Hoare, P3 should
immediately get the

critical section



Condition Variable Design Pattern
methodThatWaits() {

lock.acquire();
// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}

// Read/write shared state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Read/write shared state

// If testSharedState now true
cv.signal(&lock);

// Read/write shared state
lock.release();

}

Give up lock and 
reacquire!!

Assume signaler keeps 
lock.  More later.
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Example: Bounded Buffer
get() {
lock.acquire();
while (front == tail) {
empty.wait(lock); /* Don’t know 

state here */ 
}  // Not empty; front != tail
item = buf[front % MAX];
front++;
full.signal(lock);  // Not full
lock.release();// Front <= tail
return item;

}

put(item) {
lock.acquire();
while ((tail – front) == MAX) {
full.wait(lock);

} // Not full; tail != front+MAX

buf[tail % MAX] = item;
tail++;
empty.signal(lock);  // Not empty
lock.release(); // Front+MAX>=tail

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

X X

TailFront

Front = Tail                =>  Empty
Tail = Front + SIZE    => Full 29



Pre/Post Conditions

qWhat is state of the bounded buffer at lock acquire?
Øfront <= tail  
Øfront + MAX >= tail  (wraparound)

qThese are also true on return from wait 
qAnd at lock release
qAllows for proof of correctness 

Otherwise, wrote to full buffer or 
read from empty buffer 
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Pre/Post Conditions
methodThatWaits() {

lock.acquire();
// Pre-condition: State is
// consistent

// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}
// WARNING: shared state may
// have changed! But
// testSharedState is TRUE
// and pre-condition is true  
//(just got the lock)

// Read/write shared state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Pre-condition: State is
// consistent

// Read/write shared state

// If testSharedState is
// now true
cv.signal(&lock);

// NO WARNING: signal keeps
// lock

// Read/write shared state
lock.release();

}
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Condition Variables

qMUST hold lock when calling wait, signal, 
broadcast
ØCondition variable is sync FOR shared state
ØALWAYS hold lock when accessing shared 

state
qCondition variable is memoryless

ØIf signal when no one is waiting, no op
ØIf wait before signal, waiter wakes up

qWait atomically releases lock

32



Condition Variables, cont’d
qWhen a thread is woken up from wait, it may or 

may not run immediately
Øsignal/broadcast put thread on a waiting list to “re-

enter” the critical section
ØWhen lock is released, anyone might acquire it

qWait MUST be in a loop
while (needToWait()) {

condition.Wait(lock);
}

qSimplifies implementation
ØOf condition variables and locks
ØOf code that uses condition variables and locks 33



Design of Shared Objects
q Identify objects or data structures that can be accessed by 

multiple threads concurrently
q Add locks to object/module

Ø Grab lock on start to every method/procedure and release lock on 
finish

q If need to wait
Ø while(needToWait()) { condition.Wait(lock); }

Ø Do not assume when you wake up, signaler ran
q If do something that might wake someone up

Ø Signal or Broadcast
q Always leave shared state variables in a consistent state

Ø When lock is released, or when waiting
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Implementation Best 
Practices

q Use consistent structure
q Always use locks and condition variables
q Always acquire lock at beginning of procedure, release at 

end
q Always hold lock when using a condition variable
q Always wait in while loop
q Never spin in sleep()lock()
. . . ops . . .
while (testState()){sleep();}
. . . ops . . .
release()

lock()
. . . ops . . .
release()
while (testState()){sleep();}
lock()
. . . ops . . .
release()

Still holding the lock!

State may change between end 
of loop and lock() 35



Implementing Synchronization

Approach 1 : Using memory load/store
ØSee too much milk solution/Peterson’s algorithm

Approach 2:

Lock::acquire() 
{ disable interrupts }

Lock::release() 
{ enable interrupts }

Thread 1: aLock.acquire();
while (1==1);

aLock.release();

Interrupts are disabled.
How to regain control?

Only possible in kernel;  
Could never let a user process run with interrupts off!
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Lock Implementation: 
Uniprocessor

Lock::acquire() { 
disableInterrupts();  /* mem barrier */
if (value == BUSY) { 

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} 
else { 

value = BUSY; 
} 
enableInterrupts(); /* mem barrier */

}

Lock::release() { 
disableInterrupts();
if (!waiting.Empty()) { 

next = waiting.remove();
next->state = READY;    
readyList.add(next); 

} 
else {

value = FREE; 
} 
enableInterrupts(); 

} 
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queue of threads 
waiting on this lock

switch to another thread
control will not return 

until it is released by
lock::release 

awaken with lock;
still  BUSY



Multiprocessor
q Interrupts turned off at individual processors

ØNo instruction to turn them off on all processors 
simultaneously

ØThreads may be running on different processors
q Read-modify-write instructions

ØAtomically read a value from memory, operate on it, 
and then write it back to memory

Ø Intervening instructions prevented in hardware
q Examples

ØTest and set, Compare and swap
Ø Intel: xchg, lock prefix

q Any of these can be used for implementing locks and 
condition variables!
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Spinlocks
A spinlock is a lock where the processor waits in 

a loop for the lock to become free
ØAssumes lock will be held for a short time
ØUsed to protect the CPU scheduler and to 

implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

;
}
Spinlock::release() {

lockValue = FREE;
memorybarrier();

}

Executed ATOMICALLY:
bool testAndSet(bool *flag){

bool old=*flag;
*flag=BUSY; 
return old;  // if FREE,  return FREE

// Next process through sees
// and returns BUSY  

}
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Busy wait. Reasonable for short hold, 
e.g. < time for context switch

Memory operations before barrier guaranteed to be performed  



What Thread Is Currently Running?
q Thread scheduler needs to find the TCB of the currently 

running thread
Ø To suspend and switch to a new thread
Ø To check if the current thread holds a lock before acquiring or 

releasing it

q On a uniprocessor, easy: just use a global
q On a multiprocessor, various methods:

Ø Compiler dedicates a register (e.g., r31 points to TCB running on the 
this CPU; each CPU has its own r31)

Ø If hardware has a special per-processor register, use it
Ø Fixed-size stacks: put a pointer to the TCB at the bottom of its stack

üFind it by masking the current stack pointer
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Lock Implementation: 
Multiprocessor 1/2

Lock::acquire() { 
spinLock.acquire(); 
/* Protects lock state */
if (value == BUSY) { 

waiting.add(myTCB);

scheduler.suspend(&spinLock);
} 
else { 

value = BUSY; 
}
spinLock.release(); 

}

Lock::release() { 
spinLock.acquire();
if (!waiting.Empty()) { 

next = waiting.remove();    

scheduler.makeReady(next);
} else {
value = FREE; 

} 
spinLock.release();

} 
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scheduler releases spinlock (next slide) scheduler makes the new one ready (next slide)



Lock Implementation: 
Multiprocessor 2/2

scheduler::suspend(SpinLock ∗lock) 
{ 
TCB ∗next; 

disableInterrupts();  /* This processor! */
schedSpinLock.acquire(); /*Ready list */
lock−>release();/* Lock on lock state */
myTCB−>state = WAITING;
next = readyList.remove();
thread_switch(myTCB, next);
myTCB−>state = RUNNING; 
schedSpinLock.release();
enableInterrupts(); 

} 

scheduler::makeReady(TCB ∗thread) 
{ 

disableInterrupts();
schedSpinLock.acquire();
readyList.add(thread);
thread−>state = READY;
schedSpinLock.release();
enableInterrupts();

}
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To suspend a thread on a multiprocessor, we need to
first disable interrupts to ensure the thread is not

preempted while holding the ready list spinlock. 

Now, it is safe to release the lock’s spinlock
and switch to a new thread.

New running thread
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Thread 1                              Thread 2 Lock    spinlock  schedSpinLock
value     value value

Lock.acquire()                                                FREE      FREE        FREE
spinLock.acquire()                                          FREE      FREE        FREE

while (…)                                                 FREE      BUSY        FREE
if (value==BUSY)                                            FREE      BUSY        FREE

value = BUSY BUSY      BUSY        FREE
spinLock.release();                                         BUSY      FREE        FREE

Lock.acquire()                       BUSY      FREE        FREE
spinLock.acquire()                 BUSY      FREE        FREE

while (…)                        BUSY      BUSY        FREE
if (value==BUSY)                   BUSY      BUSY        FREE

waiting.add(myTCB)               BUSY      BUSY        FREE
scheduler.suspend(&spinlock)     BUSY      BUSY        FREE

disableinterrupts BUSY      BUSY        FREE
schedSpinLock.acquire()      BUSY      BUSY        BUSY
spinLock.release()           BUSY      FREE        BUSY
myTCB->state = WAITING       BUSY      FREE        BUSY
next = readyList.remove()    BUSY      FREE        BUSY
thread_switch(myTCB, next)   BUSY      FREE        BUSY

myTCB->state = RUNNING       BUSY      FREE        BUSY
schedSpinLock.release()      BUSY      FREE        FREE

enableinterrupts   BUSY      FREE        FREE

Thread 1 has Lock

Other threads run … acquire, release ready list spinlock spinLock

Other threads run and Thread 2 was switched out

An Execution Sequence
Three locks are involved: Lock, spinLock and schedSpinLock, all initialized to FREE



Semaphores
q Semaphore has a non-negative integer value

ØP() atomically waits for value to become > 0, then 
decrements

ØV() atomically increments value (waking up waiter if 
needed)

q Semaphores are like integers except:
ØOnly operations are P and V
ØOperations are atomic

üIf value is 1, two P’s will result in value 0 and one 
waiter

q Semaphores are useful for
ØUnlocked wait: interrupt handler, fork/join

44



Semaphore Bounded Buffer
get() 
{

fullSlots.P(); 
mutex.P();
item = buf[front%MAX];
front++;
mutex.V();
emptySlots.V();
return item;

}

put(item) 
{

emptySlots.P();
mutex.P();
buf[last%MAX] = item;
last++;
mutex.V();
fullSlots.V();

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;
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Implementing Condition 
Variables using Semaphores: 1
wait(lock) { 

lock.release(); 
semaphore.P(); 
lock.acquire();

}
signal() {

semaphore.V();
}

CV Wait():Release lock; 
Wait for signal;
Reacquire lock;

CV Signal():Awaken waiter, if there is one;
Otherwise, nop;
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Is this solution correct?  No!
What happened if a thread calls signal() and no one is waiting?

With condition variables, if a thread calls signal() 100 times,
when no one is waiting, the next wait() call will wait.

With the above code, the next 100 threads call wait()
will return immediately!



Implementing Condition 
Variables using Semaphores: 2

wait(lock)               signal()
{                        {

lock.release();          if (semaphore is not empty)     
semaphore.P();              semaphore.V();
lock.acquire();       }

}
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Thread 1 Thread 2 Semaphore Comment
wait(lock) 0 Thread 1 calls wait(lock)
release lock 0 Release the lock, switched out

signal() 0 Thread 2 calls signal()
semaphore ∅ 0 Thread 2 found no waiting
exit 0 Thread 2 return from signal()

P() 0 Thread 1 waits!
Thread 1 blocks, but should have been released

no way to access the internal of a semaphore



Implementing Condition 
Variables using Semaphores: 3

wait(lock)                   signal()
{                            {

queue.Append(myTCB);          if (!queue.Empty()) {
lock.release();                  semaphore.V();
semaphore.P();                }
lock.acquire();            }

}
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Thread 1 Thread 2 Thread 3 Comment
wait() semaphore = 0
myTCB queued
lock released lock is open

semaphore V() semaphore = 1
wait()

myTCB queued
semaphore P() semaphore = 0

Thread 3 released
semaphore P()

thread 2 releases thread 3
thread 2 should 
release thread 1

Because no one is waiting,
this signal() should have no effect.
But, this signal() has an impact on
a later thread. Incorrect implementation.



Implementing Condition 
Variables using Semaphores: 4

wait(lock) { 
semaphore = new Semaphore(0); // each waiting threads

//   has its own semaphore
queue.Append(semaphore);   // queue of waiting threads
lock.release(); 
semaphore.P(); 
lock.acquire();

}
signal() {

if (!queue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter associated

//   with semaphore
}

}

Create a semaphore 
for each waiter.  

Signaller awakens 
specific thread. 
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Remember the rules

qUse consistent structure
qAlways use locks and condition variables
qAlways acquire lock at beginning of procedure, 

release at end
qAlways hold lock when using a condition variable
qAlways wait in while loop
qNever spin in sleep()
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The End


