
1

Synchronization

Spring 2019

If you want more effective programmers,
you will discover that they should not waste their time debugging,

they should not introduce the bugs to start with.

Edsger W. Dijkstra

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

Synchronization Motivation

qWhen threads concurrently read/write shared
memory, program behavior is undefined
ØTwo threads write to the same variable; which

one should win?
qThread schedule is non-deterministic

ØBehavior changes when re-run program
qCompiler/hardware instruction reordering
qMulti-word operations are not atomic

2

Three Reasons: 1/4

qProgram execution depends on the
possible interleaving of threads’ access
to shared data.
ØYou learned in Concurrent Computing that this

is the main cause of race conditions.
ØDepending on the execution order, the result of

the shared data may become unpredictable.

3

Three Reasons: 2/4
qProgram execution can be

nondeterministic.
q Interrupts can happen any time and anywhere. As a

result, a thread can be switched out of the CPU by the
scheduler in an unpredictable way.
ØA multithreaded program can potentially have

different interleaving execution every time when it
runs.

ØJim Gray in his 1998 ACM Turing Award talk
coined the term Heisenbugs for bugs that
disappear or change behavior when you try to
examine them. Bohr bugs are deterministic and
general much easier to diagnose.

4

Three Reasons: 3/4

qCompilers and processor hardware can
reorder instructions.

qModern compilers and hardware reorder instructions
to improve performance.

qFor higher-level language statements that are
“independent” of each other, compilers are free to
order the execution of these statements. Only those
statements that are dependent of each other are
executed in the needed order. For example, c =
a+b; x = c*100; will be executed in the specified
order. However, c = a+b; x = m*n; are not
guaranteed to be executed in the specified order.

5

Three Reasons: 4/4

Thread 1

p = someComputation();
pInitialized = true;

Thread 2

while (!pInitialized)
;

q = someFunction(p);
if (q != someFunction(p))

panic

6

Because these two statements are
independent of each other, compiler or
hardware may execute the second
statement prior to the first.

Suppose the order or the two statements in
Thread 1 are changed.

Before the value of p is obtained properly,
Thread 2 could start its execution.

In this case, Thread 2 could use an unexpected
value of p to compute q.

Too Much Milk Example: 1/6
q Alice and Bob are sharing an apartment. Alice arrives

home in the afternoon, looks in the fridge and finds that
there is no milk. So, she leaves for the grocery to buy milk.

q After she leaves, Bob arrives, he also finds that there is no
milk and goes to buy milk.

q At the end both buy milk and end up with too much milk.
Time Alice Bob

5:00 Arrive home
5:05 Look in fridge; no milk
5:10 Leave for grocery
5:15 Arrive home
5:20 Look in fridge; no milk
5:25 Buy milk Leave for grocery
5:30 Arrive home; put milk in fridge Buy milk
5:40 Arrive home; put milk in fridge

Too much milk 7

Too Much Milk Example: 2/6
q Alice and Bob are looking for a solution to ensure that:

ØOnly one person buys milk, when there is no milk.
ØSomeone always buys milk, when there is no milk.

q They will communicate by leaving (signed) notes on the
door of the fridge. Note that they do not see each
other.

8

Alice Bob
if (no note) then if (no note) then

if (no milk) then if (no milk) then
leave note leave note
buy milk buy milk
remove note remove note

end if end if
end if end if

What if Alice and Bob come home at the same time?

Too Much Milk Example: 3/6
q Each of Alice and Bob first leaves note, checks the other’s

note. If no note, checks whether there is milk. If there is
no milk, then busy milk. Finally, remove his/her own note.

q Note that they do not see each other.

Alice Bob
leave note Alice leave note Bob
if (no note Bob) then if (no note Alice) then

if (no milk) then if (no milk) then
buy milk buy milk

end if end if
end if end if
remove note Alice remove note Bob

What if Alice and Bob come home and leave note at the same time? No milk!

9

Too Much Milk Example: 4/6
q Bob leaves note and repeatedly check Alice’s note until

Alice’s note is not on fridge.
q Once Bob finds Alice’s note is not there, he check for milk.

If there is no milk, Bob buys milk.
q Note that they do not see each other.

Alice Bob
leave note Alice leave note Bob
if (no note Bob) then while (note Alice) do

nothing;
if (no milk) then if (no milk) then
buy milk buy milk

end if end if
end if
remove note Alice remove note Bob

We have to assume: between the time Alice removes her note, and the time she leaves
a new note next time, Bob must be able to find out that Alice’s note has been removed.

Without this assume, they never buy milk. Find an execution for this scenario. 10

asymmetric!

Too Much Milk Example: 5/6
q The fridge has four slots for posting notes. Alice uses A1

and A2, and Bob uses B1 and B2.
q If Alice (resp., Bob) finds that there is no note labelled B1

(resp., A1) on the fridge’s door, then it is Alice (resp., Bob)
responsibility to buy milk.

q Otherwise, when both A1 and B1 are present, a decision is
made according to the notes A2 and B2.

q If both A2 and B2 are present or if neither of them is
present than it is Bob’s responsibility to by milk.

q Otherwise, it is Alice’s responsibility.

11

A1 X X A1 A2 B1 A1 B1B2

B1X X A1 B1 A1 B1B2A2

The six possible configurations
of the notes on the fridge’s door

Alice’s turn

Bob’s turn

Too Much Milk Example: 6/6
q The fridge has four slots for posting notes. Alice uses A1

and A2, and Bob uses B1 and B2.
q This is a correct solution. Study and prove it.

Alice Bob
leave note A1 leave note B1
if (B2) then if (no A2) do

leave note A2 leave note B2
else else

remove note A2 remove note B2
end if /* Alice gives priority */ end if /* giving to Alice */

/* to Bob in buying milk*/

while B1 and while A1 and
((A2 and B2) or ((A2 and no B2) or
(no A2 and no B2)) do (no A2 and B2)) do

nothing; nothing;
if (no milk) then if (no milk) then

buy milk buy milk
end if end if
remove note A1 remove note B1

12

Lessons

qSolution is complicated
Ø“obvious” code often has bugs

qYou may replace Alice and Bob with two
computers and the fridge with a file.

qModern compilers/architectures reorder
instructions
ØMaking reasoning even more difficult

qGeneralizing to many threads/processors
ØEven more complex: see Peterson’s algorithm

13

Definitions
Race condition: output of multiple threaded program

that manipulates a shared resource concurrently depends
on the order of operations among threads

Mutual exclusion: only one thread does a particular
thing at a time
ØCritical section: piece of code that only one thread

can execute at once
Lock: prevent someone from doing something

ØLock before entering critical section, before accessing
shared data

ØUnlock when leaving, after done accessing shared data
ØWait if locked (all synchronization involves waiting!)

14

Roadmap

Shared Objects

Synchronization Variables

Atomic Instructions

Hardware

Interrupt Disable

Bounded Buffer

Multiple Processors

Semaphores Locks

Test-and-Set

Barrier

Hardware Interrupts

Condition Variables

Concurrent Applications

Concurrent apps
built using shared

objects.

Shared objects
built using

synchronization
variables

Synchronization
variables (often)

built using atomic
instructions

Atomic and act
as memory

barrier

15

Locks
qLock::acquire

ØWait until lock is free, then take it
qLock::release

ØRelease lock, waking up anyone waiting for it

1. At most one lock holder at a time (Mutual
exclusion)

2. If no one holding, acquire gets lock (Progress)
3. If all lock holders finish and no higher

priority waiters, waiter eventually gets lock
Ø Need not be FIFO! Properties of a solution

to the “Critical Section”
problem

16

Question: Why only
Acquire/Release

qSuppose we add a method to a lock, to ask if the
lock is free. Suppose it returns true. Is the lock:
ØFree?
ØBusy?
ØDon’t know?

when testing the return value

In security lingo, leads
to a TOCTOU error.

“Time of check to time
of use”

17

Lock Example: malloc/free
char *malloc (n) {

heaplock.acquire();
p = allocate memory
heaplock.release();
return p;

}

void free(char *p) {
heaplock.acquire();
put p back on free list
heaplock.release();

}

18

Rules for Using Locks
qLock is initially free
qAlways acquire before accessing shared data

structure.
qAlways release after finishing with shared data

ØEnd of procedure!
ØOnly the lock holder can release
ØDO NOT throw lock for someone else to release

qNever access shared data without lock
ØDanger!

qDon’t put shared objects on the stack. Why?

19

Will this code work? 1/2

1. if (p == NULL) {
2. lock.acquire();
3. if (p == NULL) {
4. p = newP();
5. }
6. lock.release();
7. }
8. use p->field1

newP()
{

p = malloc(sizeof(p));
p->field1 = …
p->field2 = …
return p;

}

20

p is a shared variable

Will this code work? 2/2

21

Thread 1 Thread 2
1. if (p == NULL) {

2. lock.acquire();

3. if (p == NULL) {

4. p = malloc(..);

1. if (p == NULL) { }

2. p->field1;

p->field1;

p->field2;

6. lock.release();

8. p->field1;

1. if (p == NULL) {
2. lock.acquire();
3. if (p == NULL) {
4. p = newP();
5. }
6. lock.release();
7. }
8. use p->field1

lock.acquire();
if (p == NULL) {

p = newP();
}

lock.release();

lock.acquire();
if (p == NULL) {

p = newP();
}

lock.release();

ATOM
IC W

RT T
B

ATOM
IC W

RT TA

Example Shared Object Using Locks
Bounded Buffer

tryget() {
item = NULL;
lock.acquire();
if (front < tail) {
item = buf[front%MAX];

front++;
}
lock.release();
return item;

}

tryput(item) {
lock.acquire();
if ((tail–front) < size) {
buf[tail % MAX] = item;
tail++;

}
lock.release();

}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

X X

tailfront

front < tail => data available
tail = front + size => full

22

int front = .., tail = …;

The Milk Problem Revisited
qAlice and Bob calls BuyMilkIfNeeded() to

determine whether she or he should buy milk.
qProve that

ØOnly one person buys milk when there is no milk
ØSomeone always buys milk when there is no milk

23

BuyMilkIfNeeded()
{

lock.acquire();
if (no milk) {

buy milk;
}
lock.release();

}

Buying milk is mutually exclusive,
because only one person should buy.

Both have to check “milk” in a mutually
exclusive way.

If no milk, then buy it!

Can “buy milk” be moved outside
of the critical section?

Condition Variables

qWaiting inside a critical section
ØCalled only when holding a lock

qOperations
ØWait - atomically release lock and relinquish

processor
üReacquire the lock when wakened

ØSignal - wake up a waiter, if any
ØBroadcast - wake up all waiters, if any

Not UNIX
wait() and
signal()

24

Mesa vs. Hoare semantics

qMesa
ØSignal puts waiter on ready list
ØSignaler keeps lock and processor

qHoare
ØSignal gives processor and lock to waiter
ØWhen waiter finishes, processor/lock given back

to signaler
ØNested signals possible (i.e., cascading release)!

25

Hoare vs. Mesa: 1/2

mutex::acquire();
if (count >= MAX)

wait(notFull, mutex);
buf[count]=‘a’;
count++;
signal(notEmpty);

Mutex::release();

mutex::acquire();
if (count == 0)

wait(notEmpty, mutex);
ch=buf[count];
count--;
signal(notFull);

Mutex::release;

Producer Consumer

26

Replace the if with a while for the Mesa type

What if the above code is run under the Mesa type? Problem!!!

Hoare vs. Mesa: 2/2

27

P1 P2 P3 P4 C1 Count

0
Add 1 item 1

Add 1 item 2
acquire 2
wait 2

acquire 2
Take 1 item 1
signal 1
release 1

Add 1 item 2
No space! 2

Under Mesa the signaler continuesBy the time P3 gets the monitor and
runs again, the free spot has already
been taken by P4.

buffer size = 2

Under Hoare, P3 should
immediately get the

critical section

Condition Variable Design Pattern
methodThatWaits() {

lock.acquire();
// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}

// Read/write shared state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Read/write shared state

// If testSharedState now true
cv.signal(&lock);

// Read/write shared state
lock.release();

}

Give up lock and
reacquire!!

Assume signaler keeps
lock. More later.

28

Example: Bounded Buffer
get() {
lock.acquire();
while (front == tail) {
empty.wait(lock); /* Don’t know

state here */
} // Not empty; front != tail
item = buf[front % MAX];
front++;
full.signal(lock); // Not full
lock.release();// Front <= tail
return item;

}

put(item) {
lock.acquire();
while ((tail – front) == MAX) {
full.wait(lock);

} // Not full; tail != front+MAX

buf[tail % MAX] = item;
tail++;
empty.signal(lock); // Not empty
lock.release(); // Front+MAX>=tail

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

X X

TailFront

Front = Tail => Empty
Tail = Front + SIZE => Full 29

Pre/Post Conditions

qWhat is state of the bounded buffer at lock acquire?
Øfront <= tail
Øfront + MAX >= tail (wraparound)

qThese are also true on return from wait
qAnd at lock release
qAllows for proof of correctness

Otherwise, wrote to full buffer or
read from empty buffer

30

Pre/Post Conditions
methodThatWaits() {

lock.acquire();
// Pre-condition: State is
// consistent

// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}
// WARNING: shared state may
// have changed! But
// testSharedState is TRUE
// and pre-condition is true
//(just got the lock)

// Read/write shared state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Pre-condition: State is
// consistent

// Read/write shared state

// If testSharedState is
// now true
cv.signal(&lock);

// NO WARNING: signal keeps
// lock

// Read/write shared state
lock.release();

}

31

Condition Variables

qMUST hold lock when calling wait, signal,
broadcast
ØCondition variable is sync FOR shared state
ØALWAYS hold lock when accessing shared

state
qCondition variable is memoryless

ØIf signal when no one is waiting, no op
ØIf wait before signal, waiter wakes up

qWait atomically releases lock

32

Condition Variables, cont’d
qWhen a thread is woken up from wait, it may or

may not run immediately
Øsignal/broadcast put thread on a waiting list to “re-

enter” the critical section
ØWhen lock is released, anyone might acquire it

qWait MUST be in a loop
while (needToWait()) {

condition.Wait(lock);
}

qSimplifies implementation
ØOf condition variables and locks
ØOf code that uses condition variables and locks 33

Design of Shared Objects
q Identify objects or data structures that can be accessed by

multiple threads concurrently
q Add locks to object/module

Ø Grab lock on start to every method/procedure and release lock on
finish

q If need to wait
Ø while(needToWait()) { condition.Wait(lock); }

Ø Do not assume when you wake up, signaler ran
q If do something that might wake someone up

Ø Signal or Broadcast
q Always leave shared state variables in a consistent state

Ø When lock is released, or when waiting

34

Implementation Best
Practices

q Use consistent structure
q Always use locks and condition variables
q Always acquire lock at beginning of procedure, release at

end
q Always hold lock when using a condition variable
q Always wait in while loop
q Never spin in sleep()lock()
. . . ops . . .
while (testState()){sleep();}
. . . ops . . .
release()

lock()
. . . ops . . .
release()
while (testState()){sleep();}
lock()
. . . ops . . .
release()

Still holding the lock!

State may change between end
of loop and lock() 35

Implementing Synchronization

Approach 1 : Using memory load/store
ØSee too much milk solution/Peterson’s algorithm

Approach 2:

Lock::acquire()
{ disable interrupts }

Lock::release()
{ enable interrupts }

Thread 1: aLock.acquire();
while (1==1);

aLock.release();

Interrupts are disabled.
How to regain control?

Only possible in kernel;
Could never let a user process run with interrupts off!

36

Lock Implementation:
Uniprocessor

Lock::acquire() {
disableInterrupts(); /* mem barrier */
if (value == BUSY) {

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

}
else {

value = BUSY;
}
enableInterrupts(); /* mem barrier */

}

Lock::release() {
disableInterrupts();
if (!waiting.Empty()) {

next = waiting.remove();
next->state = READY;
readyList.add(next);

}
else {

value = FREE;
}
enableInterrupts();

}

37

queue of threads
waiting on this lock

switch to another thread
control will not return

until it is released by
lock::release

awaken with lock;
still BUSY

Multiprocessor
q Interrupts turned off at individual processors

ØNo instruction to turn them off on all processors
simultaneously

ØThreads may be running on different processors
q Read-modify-write instructions

ØAtomically read a value from memory, operate on it,
and then write it back to memory

Ø Intervening instructions prevented in hardware
q Examples

ØTest and set, Compare and swap
Ø Intel: xchg, lock prefix

q Any of these can be used for implementing locks and
condition variables!

38

Spinlocks
A spinlock is a lock where the processor waits in

a loop for the lock to become free
ØAssumes lock will be held for a short time
ØUsed to protect the CPU scheduler and to

implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

;
}
Spinlock::release() {

lockValue = FREE;
memorybarrier();

}

Executed ATOMICALLY:
bool testAndSet(bool *flag){

bool old=*flag;
*flag=BUSY;
return old; // if FREE, return FREE

// Next process through sees
// and returns BUSY

}

39

Busy wait. Reasonable for short hold,
e.g. < time for context switch

Memory operations before barrier guaranteed to be performed

What Thread Is Currently Running?
q Thread scheduler needs to find the TCB of the currently

running thread
Ø To suspend and switch to a new thread
Ø To check if the current thread holds a lock before acquiring or

releasing it

q On a uniprocessor, easy: just use a global
q On a multiprocessor, various methods:

Ø Compiler dedicates a register (e.g., r31 points to TCB running on the
this CPU; each CPU has its own r31)

Ø If hardware has a special per-processor register, use it
Ø Fixed-size stacks: put a pointer to the TCB at the bottom of its stack

üFind it by masking the current stack pointer

40

Lock Implementation:
Multiprocessor 1/2

Lock::acquire() {
spinLock.acquire();
/* Protects lock state */
if (value == BUSY) {

waiting.add(myTCB);

scheduler.suspend(&spinLock);
}
else {

value = BUSY;
}
spinLock.release();

}

Lock::release() {
spinLock.acquire();
if (!waiting.Empty()) {

next = waiting.remove();

scheduler.makeReady(next);
} else {
value = FREE;

}
spinLock.release();

}

41

scheduler releases spinlock (next slide) scheduler makes the new one ready (next slide)

Lock Implementation:
Multiprocessor 2/2

scheduler::suspend(SpinLock ∗lock)
{
TCB ∗next;

disableInterrupts(); /* This processor! */
schedSpinLock.acquire(); /*Ready list */
lock−>release();/* Lock on lock state */
myTCB−>state = WAITING;
next = readyList.remove();
thread_switch(myTCB, next);
myTCB−>state = RUNNING;
schedSpinLock.release();
enableInterrupts();

}

scheduler::makeReady(TCB ∗thread)
{

disableInterrupts();
schedSpinLock.acquire();
readyList.add(thread);
thread−>state = READY;
schedSpinLock.release();
enableInterrupts();

}

42

To suspend a thread on a multiprocessor, we need to
first disable interrupts to ensure the thread is not

preempted while holding the ready list spinlock.

Now, it is safe to release the lock’s spinlock
and switch to a new thread.

New running thread

43

Thread 1 Thread 2 Lock spinlock schedSpinLock
value value value

Lock.acquire() FREE FREE FREE
spinLock.acquire() FREE FREE FREE

while (…) FREE BUSY FREE
if (value==BUSY) FREE BUSY FREE

value = BUSY BUSY BUSY FREE
spinLock.release(); BUSY FREE FREE

Lock.acquire() BUSY FREE FREE
spinLock.acquire() BUSY FREE FREE

while (…) BUSY BUSY FREE
if (value==BUSY) BUSY BUSY FREE

waiting.add(myTCB) BUSY BUSY FREE
scheduler.suspend(&spinlock) BUSY BUSY FREE

disableinterrupts BUSY BUSY FREE
schedSpinLock.acquire() BUSY BUSY BUSY
spinLock.release() BUSY FREE BUSY
myTCB->state = WAITING BUSY FREE BUSY
next = readyList.remove() BUSY FREE BUSY
thread_switch(myTCB, next) BUSY FREE BUSY

myTCB->state = RUNNING BUSY FREE BUSY
schedSpinLock.release() BUSY FREE FREE

enableinterrupts BUSY FREE FREE

Thread 1 has Lock

Other threads run … acquire, release ready list spinlock spinLock

Other threads run and Thread 2 was switched out

An Execution Sequence
Three locks are involved: Lock, spinLock and schedSpinLock, all initialized to FREE

Semaphores
q Semaphore has a non-negative integer value

ØP() atomically waits for value to become > 0, then
decrements

ØV() atomically increments value (waking up waiter if
needed)

q Semaphores are like integers except:
ØOnly operations are P and V
ØOperations are atomic

üIf value is 1, two P’s will result in value 0 and one
waiter

q Semaphores are useful for
ØUnlocked wait: interrupt handler, fork/join

44

Semaphore Bounded Buffer
get()
{

fullSlots.P();
mutex.P();
item = buf[front%MAX];
front++;
mutex.V();
emptySlots.V();
return item;

}

put(item)
{

emptySlots.P();
mutex.P();
buf[last%MAX] = item;
last++;
mutex.V();
fullSlots.V();

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;

45

Implementing Condition
Variables using Semaphores: 1
wait(lock) {

lock.release();
semaphore.P();
lock.acquire();

}
signal() {

semaphore.V();
}

CV Wait():Release lock;
Wait for signal;
Reacquire lock;

CV Signal():Awaken waiter, if there is one;
Otherwise, nop;

46

Is this solution correct? No!
What happened if a thread calls signal() and no one is waiting?

With condition variables, if a thread calls signal() 100 times,
when no one is waiting, the next wait() call will wait.

With the above code, the next 100 threads call wait()
will return immediately!

Implementing Condition
Variables using Semaphores: 2

wait(lock) signal()
{ {

lock.release(); if (semaphore is not empty)
semaphore.P(); semaphore.V();
lock.acquire(); }

}

47

Thread 1 Thread 2 Semaphore Comment
wait(lock) 0 Thread 1 calls wait(lock)
release lock 0 Release the lock, switched out

signal() 0 Thread 2 calls signal()
semaphore ∅ 0 Thread 2 found no waiting
exit 0 Thread 2 return from signal()

P() 0 Thread 1 waits!
Thread 1 blocks, but should have been released

no way to access the internal of a semaphore

Implementing Condition
Variables using Semaphores: 3

wait(lock) signal()
{ {

queue.Append(myTCB); if (!queue.Empty()) {
lock.release(); semaphore.V();
semaphore.P(); }
lock.acquire(); }

}

48

Thread 1 Thread 2 Thread 3 Comment
wait() semaphore = 0
myTCB queued
lock released lock is open

semaphore V() semaphore = 1
wait()

myTCB queued
semaphore P() semaphore = 0

Thread 3 released
semaphore P()

thread 2 releases thread 3
thread 2 should
release thread 1

Because no one is waiting,
this signal() should have no effect.
But, this signal() has an impact on
a later thread. Incorrect implementation.

Implementing Condition
Variables using Semaphores: 4

wait(lock) {
semaphore = new Semaphore(0); // each waiting threads

// has its own semaphore
queue.Append(semaphore); // queue of waiting threads
lock.release();
semaphore.P();
lock.acquire();

}
signal() {

if (!queue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter associated

// with semaphore
}

}

Create a semaphore
for each waiter.

Signaller awakens
specific thread.

49

Remember the rules

qUse consistent structure
qAlways use locks and condition variables
qAlways acquire lock at beginning of procedure,

release at end
qAlways hold lock when using a condition variable
qAlways wait in while loop
qNever spin in sleep()

50

51

The End

