
1

Scheduling

Spring 2019
C++ is an insult to the human brain.

Niklaus Wirth

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

Main Points
q Scheduling policy: what to do next, when there are

multiple threads ready to run
ØOr multiple packets to send, or web requests to serve, or

…
q Definitions

Ø response time, throughput, predictability
q Uniprocessor policies

ØFIFO, round robin, optimal
Ømultilevel feedback as approximation of optimal

q Multiprocessor policies
ØAffinity scheduling, gang scheduling

q Queueing theory
ØCan you predict/improve a system’s response time?

2

Example

qYou manage a web site, that suddenly becomes
wildly popular. Do you
Øbuy more hardware?
Øimplement a different scheduling policy?
Øturn away some users? Which ones?

qHow much worse will performance get if the web
site becomes even more popular?

3

Definitions
q Task/Job

Ø User request: mouse click, web request, shell command, …
q Latency/response time

Ø How long does a task take to complete?
q Throughput

Ø How many tasks can be done per unit of time?
q Overhead

Ø How much extra work is done by the scheduler?
q Fairness

Ø How equal is the performance received by different users?
q Predictability

Ø How consistent is the performance over time?
4

More Definitions
q Workload

Ø Set of tasks for system to perform
q Preemptive scheduler

Ø If we can take resources away from a running task
q Work-conserving

Ø Resource is used whenever there is a task to run
Ø For non-preemptive schedulers, work-conserving is not

always better
q Scheduling algorithm

Ø takes a workload as input
Ø decides which tasks to do first
Ø Performance metric (throughput, latency) as output
Ø Only preemptive, work-conserving schedulers to be

considered
5

6

CPU-I/O Burst Cycle

qProcess execution
repeats the CPU
burst and I/O burst
cycle.

qWhen a process
begins an I/O burst,
another process can
use the CPU for a
CPU burst.

CPU burst

CPU burstI/O burst

CPU burst

CPU burst
I/O burst

I/O burst

7

CPU-bound and I/O-bound

qA process is CPU-bound if it generates I/O
requests infrequently, using more of its time
doing computation.

qA process is I/O-bound if it spends more of its
time to do I/O than it spends doing
computation.

qA CPU-bound process might have a few very
long CPU bursts.

qAn I/O-bound process typically has many short
CPU bursts.

8

What Does a CPU Scheduler Do?
qWhen the CPU is idle, the OS must select

another process to run.
qThis selection process is carried out by the

short-term scheduler (or CPU scheduler).
qThe CPU scheduler selects a process from the

ready queue, and allocates the CPU to it.
qThe ready queue does not have to be FIFO.

There are many ways to organize the ready
queue.

9

Circumstances That Scheduling
May Take Place

1. A process switches from the running state to the
wait state (e.g., doing for I/O)

2. A process switches from the running state to the
ready state (e.g., due to an interrupt)

3. A process switches from the wait state to the
ready state (e.g., I/O completion)

4. A process terminates

10

CPU Scheduling Occurs

new terminated

runningready

waiting

converting to process

admitted

waiting for CPU

scheduler dispatch

I/O or event waitI/O or event
completion

interrupt

reclaim resource
destroy process

waiting for I/O or event

exit

11

Preemptive vs. Non-preemptive
qNon-preemptive scheduling: scheduling occurs

when a process voluntarily enters the wait state
(case 1) or terminates (case 4).
vSimple, but very inefficient

qPreemptive scheduling: scheduling occurs in all
possible cases.
vWhat if the kernel is in its critical section

modifying some important data? Mutual
exclusion may be violated.

vThe kernel must pay special attention to this
situation and, hence, is more complex.

12

Scheduling Flow and Dispatcher
qThe dispatcher is the last step

in scheduling. It
vSwitches context
vSwitches to user mode
vBranches to the stored

program counter to
resume the program’s
execution.

qIt has to be very fast as it is
used in every context switch.

qDispatcher latency: the time
to switch two processes.

scheduling occurs

select a process
from the ready Q

dispatcher

13

Scheduling Criteria: 1/6
qThere are many criteria for comparing

different scheduling algorithms. Here are five
common ones:
vCPU Utilization
vThroughput
vTurnaround Time
vWaiting Time
vResponse Time

14

Criterion 1: CPU Utilization 2/6
qWe want to keep the CPU as busy as possible.
qCPU utilization ranges from 0 to 100 percent.
qNormally 40% is lightly loaded and 90% or

higher is heavily loaded.
qYou may bring up a CPU usage meter to see

CPU utilization on your system. Or, you may
use the top command.

15

Criterion 2: Throughput 3/6
qThe number of processes completed per time

unit is called throughput.
qHigher throughput means more jobs get done.
qHowever, for long processes, this rate may be

one job per hour, and, for short (student) jobs,
this rate may be 10 per minute.

16

Criterion 3: Turnaround Time
4/6

qThe time period between job submission to
completion is the turnaround time.

qFrom a user’s point of view, turnaround time is
more important than CPU utilization and
throughput.

qTurnaround time is the sum of
vwaiting time before entering the system
vwaiting time in the ready queue
vwaiting time in all other events (e.g., I/O)
vtime the process actually running on the CPU

17

Criterion 4: Waiting Time 5/6
qWaiting time is the sum of the periods that a

process spends waiting in the ready queue.
qWhy only ready queue?

vCPU scheduling algorithms do not affect the
amount of time during which a process is
waiting for I/O and other events.

vHowever, CPU scheduling algorithms do
affect the time that a process stays in the
ready queue.

18

Criterion 5: Response Time 6/6
qThe time from the submission of a request (in

an interactive system) to the first response is
called response time. It does not include the
time that it takes to output the response.

qFor example, in front of your workstation, you
perhaps care more about the time between
hitting the Return key and getting your first
output than the time from hitting the Return
key to the completion of your program (e.g.,
turnaround time).

19

What Are the Goals?
qIn general, the main goal is to maximize CPU

utilization and throughput and minimize
turnaround time, waiting time and response time.

qIn some systems (e.g., batch systems), maximizing
CPU utilization and throughput is more important,
while in other systems (e.g., interactive) minimizing
response time is paramount.

qSometimes we want to make sure some jobs must
have guaranteed completion before certain time.

qOther systems may want to minimize the variance
of the response time.

20

Scheduling Algorithms
qWe will discuss a number of scheduling

algorithms:
ØFirst-Come, First-Served (FCFS)
ØShortest-Job-First (SJF)
ØPriority
ØRound-Robin
ØMultilevel Queue
ØMultilevel Feedback Queue

21

First-Come, First-Served: 1/3
qThe process that requests the CPU first is

allocated the CPU first.
qThis can easily be implemented using a queue.
qFCFS is not preemptive. Once a process

has the CPU, it will occupy the CPU until the
process completes or voluntarily enters the wait
state.

22

FCFS: Example 2/3
qFour jobs A, B, C and D come into the

system in this order at about the same
time.

A B C D
10 5 7 6

Process Start Running End

A 0 10 10

B 10 5 15

C 15 7 22

D 22 6 28

Average Waiting Time
= (0 + 10 + 15 + 22)/4
= 47/4 = 11.8

Average turnaround
= (10 + 15 + 22 + 28)/4
= 75/4 = 18.8

23

FCFS: Problems 3/3
qIt is easy to have the convoy effect: many

processes wait for the one big process to get off
the CPU. CPU utilization may be low.
Consider a CPU-bound process running with
many I/O-bound process.

qIt is in favor of long processes and may not be
fair to those short ones. What if your 1-minute
job is behind a 10-hour job?

qIt is troublesome for time-sharing systems,
where each user needs to get a share of the
CPU at regular intervals.

24

Shortest-Job First: 1/9
qEach process in the ready queue is associated

with the length of its next CPU burst.
qWhen a process must be selected from the

ready queue, the process with the smallest next
CPU burst is selected.

qThus, processes in the ready queue are sorted
in CPU burst length.

qSJF can be non-preemptive or preemptive.

25

Non-preemptive SJF: Example
2/9

A B C D

10 5 7 6

Process Start Running End

B 0 5 5
D 5 6 11
C 11 7 18
A 18 10 28

qFour jobs A, B, C and D come into
the system in this order at about
the same time.

Average waiting time
= (0 + 5 + 11 + 18)/4
= 34/4 = 8.5

Average turnaround
= (5 + 11 + 18 + 28)/4
= 62/4 = 15.5

26

Non-Preemptive SJF: 3/9

Job Arr Burst Wait

A 0 8 0
B 1 4 7
C 2 9 15
D 3 5 9

A=8

B

C
D

A
B=4

D=5
C=9

wait = 7

wait = 15
wait = 9

average wait = (0+7+15+9)/4=7.75
average turnaround time

= (8+11+24+14)/4 = 14.25

turnaround time (8)

turnaround time (11)

turnaround time (24)

turnaround time (14)

27

Preemptive SJB: 4/9
qBy “preemptive” it means when a new process

comes in, the CPU scheduler may suspend the
running process and update the remaining CPU
burst of EVERY process, the newcomer included,
and reorganize the ready queue.

q In this way, the current running process may not
have the CPU if the newcomer has a shorter CPU
burst.

qFor example, suppose a newcomer has a CPU burst
of 5 units of time. If the currently running process
has 6 units of time to run, then the newcomer will
have the CPU, because it has a shorter CPU-burst
(5) than that of the currently running process (6).

28

Preemptive SJF: Example 5/9

A
1

A=7
B=4

A=7
B=3
C=9

A=7
B=2
C=9
D=5

B = 4

A=7
C=9
D=5

D = 5

A=7
C=9

A = 7

C=9

C = 9

Job Arr Burst Wait

A 0 8 9

B 1 4 0

C 2 9 15

D 3 5 2average wait = (9+0+15+2)/4 = 6.5
average turnaround time = (17+4+24+7)/4 = 13

wait = 4+5 = 9

wait = 3+5+7=15

2

Preemptive means: when a new process arrives, an update of burst time is required

turnaround time (17)

turnaround time (4)

turnaround time (24)

turnaround time (7)

29

SJF Is Provably Optimal! 6/9
q What is optimal?
q It means minimal

average waiting
time.

q Every time we make a
short job before a long
one, we reduce average
waiting time.

q We may switch out of
order jobs until all jobs
are in order.

q If jobs are sorted, job
switching is impossible.

q Remember the bubble
sort?

A

A

B

B

A waits 0

A waits b

B waits a

B waits 0

a

a

b

b

average = a/2

average = b/2

30

How Do We Know the Next CPU
Burst? 7/9

qWithout a good answer to this question, SJF
cannot be used for CPU scheduling.

qWe try to predict the next CPU burst!
qLet tn be the length of the nth CPU burst and
pn+1 be the prediction of the next CPU burst

where α is a weight value in [0,1].
qIf α = 0, then pn+1 = pn and recent history has no

effect. If α = 1, only the last burst matters. If α
is ½, the actual burst and predict values are
equally important.

pn+1 = α tn + (1 – α) pn

31

Estimating the next burst:
Example: 8/9

qInitially, we have to use a default value p1
because we have no history value.

qThe following is an example with α = ½.

CPU
burst

6 4 6 4 13 13 13

Guess 10 8 6 6 5 9 11 12

p1 p2 p3 p4 p5 p6 p7 p8

t1 t2 t3 t4 t5 t6 t7

32

SJF Problems: 9/9

qIt is difficult to estimate the next burst time
value accurately.

qSJF is in favor of short jobs. As a result, some
long jobs may not have a chance to run at all.
This is starvation.

qThe preemptive version is usually referred to as
shortest-remaining-time-first (SRTF) scheduling,
because scheduling is based on the “remaining
time” of a process.

33

Priority Scheduling 1/4
qEach process is assigned a priority.
qPriority may be determined internally or externally:

vinternal priority: determined by time limits,
memory requirement, # of files, and so on.

vexternal priority: not controlled by the OS (e.g.,
importance of the process)

qThe CPU scheduler always picks the process (in the
ready queue) with the highest priority to run.

qFCFS and SJF are special cases of priority
scheduling. (Why?)

34

Priority Scheduling: Example
2/4

A2 B4 C1 D3

10 5 7 6

Process Start Running End
C 0 7 7
A 7 10 17
D 17 6 23
B 23 5 28

qFour jobs A, B, C and D come into
the system in this order at about
the same time. Subscripts are
priority. Smaller means higher.

average wait time
= (0+7+17+23)/4
= 47/4 = 11.75

average turnaround time
= (7+17+23+28)/4
= 75/4 = 18.75

35

Priority Scheduling: Starvation
3/4

qPriority scheduling can be non-preemptive or
preemptive.

qWith preemptive priority scheduling, if the
newly arrived process has a higher priority than
the running one, the latter is preempted.

qIndefinite block (or starvation) may occur: a
low priority process may never have a chance to
run.

36

Priority Scheduling: Aging 4/4

qAging is a technique to overcome the starvation
problem.

qAging: gradually increases the priority of
processes that wait in the system for a long time.

qExample:
ØIf 0 is the highest (resp., lowest) priority, then

we could decrease (resp., increase) the priority
of a waiting process by 1 every fixed period
(e.g., every minute).

37

Round-Robin Scheduling: 1/5
qRound-Robin (RR) is similar to FCFS, except

that each process is assigned a time quantum.
qProcesses in the ready queue form a FIFO list.
qWhen the CPU is free, the scheduler picks the

first and lets it run for one time quantum.
qIf that process uses CPU for less than one time

quantum, it is moved to the tail of the list.
qOtherwise, when one time quantum is up, that

process is preempted by the scheduler and
moved to the tail of the list.

38

Round-Robin Scheduling: 2/5
qAt the end of a time quantum, the currently

running process is removed from the CPU and
the next process is chosen.

qAt this point, what if a new process arrives?
qSome systems add the newcomer to the tail of

the list rather than running it immediately.
qCertainly, different systems handle this

situation differently.

39

Round-Robin: Example 1 3/5
80 2 4 6

BA

B B
C

BC

B
D

D
C

C
B

C
B
E

B
E
D

E
D
C

D
C
B

C
B
E

B
E
D

E
D
C

D
C
B

C
B

B
D

D

10 12 14 16 18 20

proc arr CPU turn wait
A 0 3 4 1
B 2 6 16 10
C 4 4 13 9
D 6 5 14 9
E 8 2 7 5

time quantum = 1

C turnaround = 17-4=13
C wait = 13-4=9
Avg turnaround=10.8
Avg wait = 4.25

process starts running
process ends
process arrives

waiting lists

The above diagram is constructed based on giving higher priority to the currently running process.

process arrives

40

Round-Robin: Example 2 4/5
80 2 4 6 10 12 14 16 18 20

proc arr CPU turn wait
A 0 3 3 0

B 2 6 15 9

C 4 4 7 3

D 6 5 14 9

E 8 2 11 9

time quantum = 4

D turnaround = 20-6=14
D wait = 14-5=9
Avg turnaround=10
Avg wait = 6

B

B

C

C

C
D

C
D

D
B

D
B
E

D
B
E

B
E

E
D

D

process starts running

process ends

process arrives

waiting lists

The above diagram is constructed based on giving higher priority to the currently running process.

41

RR Scheduling: Some Issues 5/5
qIf time quantum is too large, RR reduces to FCFS
qIf time quantum is too small, RR becomes

processor sharing
qContext switching may affect RR’s performance

ØShorter time quantum means more context
switches

qTurnaround time also depends on the size of time
quantum.

qIn general, 80% of the CPU bursts should be
shorter than the time quantum

42

Multilevel Queue Scheduling
qA multilevel queue scheduling algorithm partitions

the ready queue into a number of separate queues
(e.g., foreground and background).

qEach process is assigned permanently to one
queue based on some properties of the process
(e.g., memory usage, priority, process type)

qEach queue has its own scheduling algorithm (e.g.,
RR for foreground and FCFS for background)

qA priority is assigned to each queue. A higher
priority process may preempt a lower priority
process.

43

Multilevel Queue

qA process P can run
only if all queues
above the queue that
contains P are empty.

qWhen a process is
running and a
process in a higher
priority queue comes
in, the running
process is preempted.

44

Multilevel Queue with Feedback
qMultilevel queue with feedback scheduling is

similar to multilevel queue; however, it allows
processes to move between queues.

qIf a process uses more (resp., less) CPU time, it
is moved to a queue of lower (resp., higher)
priority.

qAs a result, I/O-bound (resp., CPU-bound)
processes will be in higher (resp., lower)
priority queues.

45

Multilevel Queue with Feedback
qProcesses in queue i have

time quantum 2i
qWhen a process’ behavior

changes, it may be moved
(i.e., promoted or demoted)
to a difference queue.

qThus, when an I/O-bound
(resp., CPU-bound) process
starts to use more CPU
(resp., do more I/O), it may
be demoted (resp.,
promoted) to a lower (resp.,
higher) queue.

Uniprocessor Summary: 1/3

qFIFO is simple and minimizes overhead.
qIf tasks are variable in size, then FIFO can have

very poor average response time.
qIf tasks are equal in size, FIFO is optimal in terms

of average response time.
qConsidering only the processor, SJF is optimal in

terms of average waiting time.
qSJF is pessimal in terms of variance in response

time.

46

Uniprocessor Summary: 2/3

qIf tasks are variable in size, Round Robin
approximates SJF. (Why?)

qIf tasks are equal in size, Round Robin will have
very poor average response time.

qTasks that intermix processor and I/O benefit
from SJF and can do poorly under Round Robin.

47

Uniprocessor Summary: 3/3

qRound Robin and Max-Min fairness both avoid
starvation.

qBy manipulating the assignment of tasks to
priority queues, an MFQ scheduler can achieve a
balance between responsiveness, low overhead,
and fairness.

qIn a large and complex system, scheduling is
usually combined with memory or even resource
management.

48

Case Study: IBM VM/370 1/7

q The precursor of VM/370 and CP/CMS, was conceived in
1964 as a second-generation time-sharing system for the
newly announced IBM System/360*. (CP = Control
Program, CMS = Conversational Monitor System)

q In 1966, CP-40 and CMS both became operational using
an IBM System/360 Model 40.

q At about the same time, CP-67 was built to use the address
translation feature of the new System/360 Model 67.

q IBM VM/CMS was released in 1972 and was a System/370
reimplementation of the earlier CP/CMS.

q VM/370 (Virtual Machine Facility/370) is a family of
virtual machine operating systems. Versions include
VM/SP and z/VM.

49
*For early history, see R. J. Creasy, The Origin of the VM/370 Time-Sharing System,
IBM Journal of Research and Development, Vol. 25 (1981), No. 5, pp. 483-490.

Case Study: IBM VM/370 2/7

q Under VM/370, more than 16,000 virtual machines can be
created, each of which is identical to the underlying
hardware IBM System/370. Thus, these VM’s are all self-
virtualized machines.

q Each virtual machine (VM) can load an IBM operating
system (e.g., DOS/VS, OS/MVS, even another level of VM).

q The CMS is a single user interactive system.

q The control program (CP) knows the behavior of each VM,
CMS included; but, the CP does not know the behavior of
the user processes running under an operating system in a
VM. The CP considers each VM as a process!

50

Case Study: IBM VM/370 3/7

q The scheduler schedules the VMs, and the OS running in a
VM schedules its processes.

q Because IBM systems are usually very large and run many
CPU-bound and I/O-bound processes at the same time,
and each process (and each VM) may use a large amount
of resource (e.g., virtual memory), scheduling policy has to
work with system resource managers.

q Note that the operating system running in a VM could be a
very complex one (e.g., OS/MVS). This operating system
could run both batch processes and interactive processes.

q As a result, CP classifies all the processes (i.e., virtual
machines) it can see into eight categories.

51

Case Study: IBM VM/370 4/7

qThere are in general three basic types of processes
in CP:
Ø Interactive: Processes use terminal interactive I/O

frequently. A process finishing an interactive I/O is
classified as interactive; otherwise, non-interactive.

ØWaiting: Processes waits on non-interactive I/O or
waiting for a page frame (virtual memory).

Ø Idle: process suspended due to insufficient resource
(e.g., memory, number of pages)

52

Case Study: IBM VM/370 5/7

53

Type Description

1 Interactive Ready

2 Wait

3 Suspended

4 wait for completion of terminal I/O

5 non-interactive Ready

6 Wait

7 Suspended

8 waiting for external interrupts or stopped

Eight Types of Processes under CP (Control Program)

Case Study: IBM VM/370 6/7

54

runningQ1 Ready

Q1 wait I/O

Q2, Q3 Ready

Q1, Q3 wait I/O

Q1 process
does I/O

Q2/Q3 process
does I/O

I/O completion I/O completion

wait for
terminal I/O

idle Q2 pre-ReadyQ1 pre-Ready

sufficient memory
available

sufficient memory
available

VM terminal
I/O

VM terminal
I/O completed

time quantum expired
classify process

estimate memory usage

Q1(1,2) Q2,Q3(5,6)

(8)

mixed priority

Q1: interactive
Q2: non-interactive
Q3: CPU-bound

active processes
inactive processes

Case Study: IBM VM/370 7/7
qThis basically follows the foreground (interactive)

background (batch) approach.

qForeground processes always have higher priority.

qHowever, CP’s scheduler dynamically classifies
processes into Q1, Q2 and Q3 types rather than using
only foreground and background.

qTime quantum of processes in Q1 and Q2 is shorter
than those processes in Q3 (CPU-bound).
Additionally, processes in Q3 are less likely to be
scheduled to run.

qTherefore, the scheduler in a complex system does not
usually work alone, and it has to work with other
system components (e.g., memory management).

55

56

Real-Time Scheduling: 1/6
qA real-time system is one whose correctness

depends on timing as well was functionality.
qReal-time systems have very different

requirements, characterized by different metrics:
ØTimeliness: how close does it meet its timing

requirement
ØPredictability: how much deviation is there in

delivered timeliness
qMore concepts:

ØFeasibility: whether or not it is possible to meet the
requirements for a particular task set

ØHard Real-Time: discuss later
ØSoft Real-Time: discuss later

57

Real-Time Scheduling: 2/6
qThere are two types of real-time systems, hard

and soft:
ØHard Real-Time: critical tasks must be

completed within a guaranteed amount of time
üThe scheduler either admits a process and

guarantees that the process will complete on-time,
or rejects the request (resource reservation)

üThis is almost impossible if the system has
secondary storage and virtual memory because
these subsystems can cause unavoidable delay.

üHard real-time systems usually have special
software running on special hardware.

58

Real-Time Scheduling: 3/6
qThere are two types of real-time systems, hard

and soft:
ØSoft Real-Time: Critical tasks receive higher

priority over other processes
üIt is easily doable within a general system
üIt could cause long delay (starvation) for non-

critical tasks.
üThe CPU scheduler must prevent aging to occur.

Otherwise, critical tasks may have lower priority.
üAging can be applied to non-critical tasks.
üThe dispatch latency must be small.

59

Real-Time Scheduling: 4/6
qIn the simplest real-time systems, where tasks

and their execution times are all known, there
might not be a scheduler. One task might
simply call (or yield to) the next.

qIn more complex real-time systems, with a
larger (but still fixed) number of tasks that do
not function in a strictly pipeline way, it may be
possible to do static scheduling.

qBased on the list of tasks to be run, and the
expected completion time for each, we can
define a fixed schedule that will ensure timely
execution of all tasks.

60

Real-Time Scheduling: 5/6
qFor many real-time systems, the work-load

changes from moment to moment, based on
external events. Dynamic scheduling is
required. There are two key questions:
1) How they choose the next ready task?

ü SJF, static priority, soonest start-time deadline
first (ASAP), soonest completion-time deadline
first (slack time).

2) How they handle overload (infeasible
requirements)
ü Best effort, periodicity adjustment (run lower

priority tasks les often), work shedding (stop
running lower priority tasks completely).

61

Real-Time Scheduling: 6/6
qHow about preemption?

ØPreempting a running task will almost surely
cause it to miss its completion deadline

ØBecause we normally know the expected
execution time, we can schedule accordingly
and should have little need for preemption

ØEmbedded and real-time systems run fewer
and simpler tasks than general purpose
system, and the code is usually much better
tested. Therefore, infinite loop and other
odd bugs are rare.

62

Priority Inversion
qWhat if a high-priority process needs to access

the data that is currently being held by a low-
priority process? The high-priority process is
blocked by the low-priority process. This is
priority inversion.

qThis can be solved with priority-inheritance
protocol.
ØThe low priority process accessing the data

inherits the high priority until it is done with
the resource.

ØWhen the low-priority process finishes, its
priority reverts back to the original.

63

The End

