
1

Address Translation

Spring 2019

If a machine is expected to be infallible,
It cannot also be intelligent.

Alan Turing

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

2

Address Generation
qAddress generation has three stages:

vCompile: compiler
vLink: linker or linkage editor
vLoad: loader

source
code

object
module

load
module

memory
compiler linker loader

3

Three Address Binding Schemes
qCompile Time: If the complier knows the

location a program will reside, it can generate
absolute code. Example: compile-go systems
and MS-DOS .COM-format programs.

qLoad Time: A compiler may not know the
absolute address. So, the compiler generates
relocatable code. Address binding is delayed
until load time.

qExecution Time: If the process may be moved
in memory during its execution, then address
binding must be delayed until run time. This is
the commonly used scheme.

4

Address Generation: Compile Time

5

Linking and Loading

6

Address Generation: Static Linking

7

qCode and data are
loaded into memory at
addresses 10000 and
20000, respectively.

qEvery unresolved
address must be
adjusted.

Loaded into Memory

Main Points
qAddress Translation Concept

ØHow do we convert a virtual address to a physical
address?

qFlexible Address Translation
ØBase and bound
ØSegmentation
ØPaging
ØMultilevel translation

qEfficient Address Translation
ØTranslation Lookaside Buffers (TLB)
ØVirtually and physically addressed caches

8

Address Translation Goals
qMemory protection
qMemory sharing

ØShared libraries, interprocess communication
qSparse addresses

ØMultiple regions of dynamic allocation (heaps/stacks)
qEfficiency

ØMemory placement
ØRuntime lookup
ØCompact translation tables

qPortability
9

Goals: 1/4
qMemory Protection
qMemory Sharing
qFlexible Memory Placement
qSparse Addresses
qRuntime Lookup Efficiency
qCompact Translation Tables
qPortability

10

Goals: 2/4
qMemory Protection

ØWe need the ability to limit the access of a
process to certain regions of memory

qMemory Sharing
ØWe want to allow multiple processes to

shared selected regions of memory (e.g.,
shared memory segments)

qFlexible Memory Placement
ØWe want to allow the operating system the

flexibility to place a process (and each part
of a process) anywhere in physical memory.

11

Goals: 3/4
qSparse Addresses

ØMany programs have multiple dynamic
memory regions that can change (e.g., heap,
stack, etc.). Modern processors have 64-bit
address spaces, but making the address
translation more complex.

qRuntime Lookup Efficiency
ØHardware address translation occurs on

every instruction fetch and every data load
and save. Thus, translation has to be
efficient and faster than the instructions.

12

Goals: 4/4
qCompact Translation Tables

ØWe need some tables to aid address
translation. These table data structures
have to be compact enough to save memory.

qPortability
ØDifferent hardware implementation use

different choices to implement address
translation. If an operating system is to be
easily portable, it needs to be able hardware
independent.

13

14

Logical, Virtual, Physical Address
qLogical Address: the address generated by the

CPU.
qPhysical Address: the address seen and used by

the memory unit.
qVirtual Address: Run-time binding may generate

different logical address and physical address.
In this case, logical address is also referred to as
virtual address. (Logical = Virtual in this
course)

Address Translation Concept

15

Virtually Address Base and
Bounds

16

17

Relocation and Protection: 1/2
q Because executables

may run in any area,
relocation and
protection are needed.

q Recall the base/limit
register pair for
memory protection.

q It could also be used
for relocation if the
linker generates
executables starting
from 0.

q Linker generates
relocatable code
starting with 0. The
base register contains
the starting address.

base
bound OS

a user program
address starts from 0

18

Relocation and Protection: 2/2

CPU

bound base

< m
em

or
y

logical
address

yes

physical
address

no

not your space
traps to the OS
addressing error

+

protection relocation

19

Relocation: How does it work?

process moved to a new address k

1

base

base

bound

bound

Virtually Addressed Base and
Bound

qPros?
ØSimple
ØFast (2 registers, adder, comparator)
ØSafe
ØCan relocate in physical memory without changing

process
qCons?

ØCan’t keep program from accidentally overwriting its
own code

ØCan’t share code/data with other processes
ØCan’t grow stack/heap as needed

20

Segmentation: 1/7
qSegment is a contiguous region of virtual address

space
qEach process has a segment table, and each entry in

the table has a pointer to a segment
qSegment can be located anywhere in physical

memory, and each segment has: start (i.e., base),
length (i.e., bound), access permission, etc.

qTherefore, segmentation can be considered as having
multiple base/bound registers stored in a table.

qProcesses can share segments.
21

Segmentation: 2/7

22

Each process has at four segments:
code, data, heap and stack

Each virtual address is divided into a segment # and an offset in that segment.
Suppose we have 31-bit address, and this address is divided into 16-bit for offset
and 15-bit for segment number. In this way, 16-bit offset means segment max. size
is 216 = 64K bytes and 215 segments.

segment table pointer
in a special register

Segmentation: 3/7
qA process is divided into segments. The chunks

that a program is divided into which are not
necessarily of the same length.

qEarly systems (MULTICS and Burroughs
B5700/B6700) used segmentation memory
management.

qBurroughs Corporation was founded in 1886, in
1986 merged with Sperry UNIVAC and renamed
Unisys. In the 1970’sm Burroughs developed
some large systems based on the block-based (i.e.,
ALGOL) languages.

23

Segmentation: 4/7
qBurroughs B5700/B6700 are interesting as their

processors are designed around the language
blocked-structured (e.g., ALGOL, PL/I, etc.).

qProcedures can be declared as local procedures,
which are called by the containing procedure.

qThus, procedures do have a tree structure.
qEach procedure is in its own segment.
qA hardware pointer ip is the program counter.
qAnother pointer EP points to the activation record

on a stack.

24

Segmentation: 5/7
qThere are two sets of pointers, one pointing to the

executing code and the order to the its
corresponding execution environment.

25

Each “procedure” is in its own segment, and
the segment directory table has pointers to
each segment.

The left diagram shows 6 procedures
and the ip pointer indicates that the
processor is executing procedure C!

Diagram is taken from Elliott I. Organick, Computer System Organization: The B5700/B6700, ACM Press, 1973.

The ip (3,j) indicates the next instruction
is in segment 3 and offset j.

Segmentation: 6/7
qThere are two sets of pointers, one pointing to the

executing code and the order to the its
corresponding execution environment.

26
Diagram is taken from Elliott I. Organick, Computer System Organization: The B5700/B6700, ACM Press, 1973.

Each “procedure” has its own
“environment” (i.e., segment), and
the segment Display points to the
Location of its activation record.

This diagram shows the corresponding
activation record on the stack.

The left diagram shows 5 procedures
and the EP pointers indicate the
processor is executing procedure C!

Segmentation: 7/7
qPros?

ØCan share code/data segments between processes
ØCan protect code segment from being overwritten
ØCan transparently grow stack/heap as needed
ØCan detect if need to copy-on-write

qCons?
ØComplex memory management

üNeed to find chunk of a particular size
ØMay need to rearrange memory from time to time to

make room for new segment or growing segment
üExternal fragmentation: wasted space between chunks

27

28

Segmentation Sharing

shared code
segment

point to the same segment

point to the same segment

Segmentation Fault

qEach entry in the segment table controls a portion of
the virtual address space.

qWhen a request for creating a new segment comes
but the system does not have enough space, a
segment fault is generated. Note that the system
may still have enough memory in total; but, each
piece of free space is smaller than the requested one
(e.g., fragmented).

qSome systems (e.g., Unix) may also generate a
segment fault if a process accesses an address not in
any existing segment.

29

UNIX fork and Copy on Write

qUNIX fork
ØMakes a complete copy of a process

qSegments allow a more efficient
implementation
ØCopy segment table into child
ØMark parent and child segments read-only
ØStart child process; return to parent
ØIf child or parent writes to a segment (ex: stack, heap)

ütrap into kernel
ümake a copy of the segment and resume

30

Zero-on-Reference
qHow much physical memory is needed for the

stack or heap?
ØANS: only what is currently in use

qWhen program uses memory beyond end of stack
ØSegmentation fault into OS kernel
ØKernel allocates some memory

üHow much?
ØZeros the memory

üavoid accidentally leaking information!
ØModify segment table
ØResume process

31

Segmentation Downside
q The number of segments can be large, and their size vary

significantly.
q What if a request for a 14K segment arrives?
q This is impossible even though the system does

have 37k = 12+10+8+7.
q The free space is not contiguous even though the

total is good enough for this allocation..
q These free slots not in any segment are

external fragmentation.
q We could move the allocated space around to get a

large enough space for the request provided that
each allocated space is relocatable (e.g., segment).

32

free 10k

free 8k

free 7k

free 12k

allocated

allocated

allocated

33

Fragmentation
qProcesses are loaded and removed from memory,

eventually memory is cut into small holes that are
not large enough to run any incoming process.

qFree memory holes between allocated ones are
called external fragmentation.

qIt is unwise to allocate exactly the requested
amount of memory to a process, because of address
boundary alignment requirements or the minimum
requirement for memory management.

qThus, memory that is allocated to a partition, but is
not used, is an internal fragmentation.

34

External/Internal Fragmentation

used

used

used

used

used

free

free

un-used

used

external
fragmentation

allocated area

internal fragmentation

35

Compaction for External
Fragmentation

qIf processes are relocatable, we may move used
memory blocks together to make a larger free
memory block.

used

used

used

used

used

free
free

used

used

used

used

used

free

free

36

Paging: 1/2
qThe physical memory is divided into fixed-sized

page frames, or frames.
qThe virtual address space is also divided into

blocks of the same size, called pages.
qWhen a process runs, its pages are loaded into

page frames.
qA page table stores the page numbers and their

corresponding page frame numbers, etc.
qThe virtual address is divided into two fields:

page number and offset (in that page).

37

Paging: 2/2

0

1

2

3

1

0

2

3

4

5

6

8

9

10

0
1
2
3

7
2
9
5

logical memory
page table

physical memory

page # offset within the page

logical address
p d

d

d

Logical address <1, d> translates to physical address <2, d>
because page 1 is logical space is stored in page frame 2.

7

Paged Translation (Abstract)

38

Physical space is divided into page
frames of equal size usually 2k, 4k, 8k.

Virtual space is also divided into [ages
of the same size so that each page
can be fit into a page frame.

the code section has 2 pages (& page frames)

the data section has 2 pages (& page frames)

the heap section has 3 pages (& page frames)

39

Address Translation

page table pointer

Paged Translation (Implement)

40

virtual address is divided
into page # and offset

page # indices into the page table from page table, the initial
address of that page is obtained.

eventually a valid
physical address
is constructed.

41

Translation Example: 1/3
qSuppose we have a logical/virtual address x, and

suppose the page size is y.
qThen, x/y is the group (of size y) x is in, and x%y

is the offset within that (x/y) group.
qExample: Suppose y = 16 and x = 76. Then, x/y

= 76/16 = 4. Therefore, if 76 elements are
grouped into 16 each, then 76 is in the 4th group.
Because 76%16 = 12, 76 is the 12th element in the
4th group.

42

Translation Example: 2/3
q Suppose page size uses k bits. The address of a page is

from 0 to 2k-1. If page size is 4K = 212, then the address in
a page is from 0 to 212-1=4095.

q Dividing by 2 can be achieved by shifting to the right. For
example, for 1310 = 11012, dividing 13 by 2 is obtained by
shifting 11012 to the right 1 bit yielding 1102 = 610. Thus,
dividing a number x by 2k can be obtained by shifting x to
the right k bits.

q Example: Suppose an address 110110011011102 is
divided by 28. The result is 1101102, which is the page
number. The remainder 011011102 is the offset in this page.

q Conclusion: Given a logical/virtual address of n bits and
page size 2k, the page number of this address is the first n-k
bits and the offset in this page is the last k bits.

43

Translation Example: 3/3

44

Hardware Support
qPage table may be stored in special registers if the

number of pages is small.
qPage table may also be stored in physical memory,

and a special register, page-table base register, points
to the page table.

qUse translation look-aside buffer (TLB). TLB stores
recently used pairs (page #, frame #). It compares
the input page # against the stored ones. If a match
is found, the corresponding frame # is the output.
Thus, no page table access is required.

qThis comparison is done in parallel and is fast.
qTLB normally has 64 to 1,024 entries.

Paging Questions

qWith paging, what is saved/restored on a process
context switch?
Øpointer to page table, size of page table
Øpage table itself is in main memory

qWhat if page size is very small?
qWhat if page size is very large?

ØInternal fragmentation: if we don’t need
all of the space inside a fixed size chunk

45

Paging and Copy on Write

qCan we share memory between processes?
ØSet entries in both page tables to point to same page

frames
ØNeed core map of page frames to track which processes

are pointing to which page frames (e.g., reference count)
qUNIX fork with copy on write

ØCopy page table of parent into child process
ØMark all pages (in new and old page tables) as read-only
ØTrap into kernel on write (in child or parent)
ØCopy page
ØMark both as writeable
ØResume execution

46

Fill On Demand

qCan I start running a program before its code is in
physical memory?
ØSet all page table entries to invalid
ØWhen a page is referenced for first time, kernel

trap
ØKernel brings page in from disk
ØResume execution
ØRemaining pages can be transferred in the

background while program is running

47

Sparse Address Spaces

qMight want many separate dynamic segments
ØPer-processor heaps
ØPer-thread stacks
ØMemory-mapped files
ØDynamically linked libraries

qWhat if virtual address space is large?
Ø32-bits, 4KB pages => 500K page table entries
Ø64-bits => 4 quadrillion page table entries

48

Multi-level Translation
qTree of translation tables

ØPaged segmentation
ØMulti-level page tables
ØMulti-level paged segmentation

qFixed-size page as lowest level unit of allocation
ØEfficient memory allocation (compared to segments)
ØEfficient for sparse addresses (compared to paging)
ØEfficient disk transfers (fixed size units)
ØEasier to build translation lookaside buffers
ØEfficient reverse lookup (from physical -> virtual)
ØVariable granularity for protection/sharing

49

Paged Segmentation

qProcess memory is segmented
qSegment table entry:

ØPointer to page table
ØPage table length (# of pages in segment)
ØAccess permissions

qPage table entry:
ØPage frame
ØAccess permissions

qShare/protection at either page or segment-level
50

Paged Segmentation
(Implementation)

51

Multilevel Paging

52

8-bit 6-bit 6-bit 12-bit

q There are 256, 64 and 64 entries
in level 1, 2, and 3 page tables.

q Page size is 4k = 212 = 4,096 bytes
q Virtual space size = (28*26*26 pages)*4K = 232 bytes

x86 Multilevel Paged
Segmentation

qGlobal Descriptor Table (segment table)
ØPointer to page table for each segment
ØSegment length
ØSegment access permissions
ØContext switch: change global descriptor table register

(GDTR, pointer to global descriptor table)
qMultilevel page table

Ø4KB pages; each level of page table fits in one page
Ø32-bit: two level page table (per segment)
Ø64-bit: four level page table (per segment)
ØOmit sub-tree if no valid addresses

53

Multilevel Translation

qPros:
ØAllocate/fill only page table entries that are in

use
ØSimple memory allocation
ØShare at segment or page level

qCons:
ØSpace overhead: one pointer per virtual page
ØTwo (or more) lookups per memory reference

54

Portability

qMany operating systems keep their own memory
translation data structures
ØList of memory objects (segments)
ØVirtual page -> physical page frame
ØPhysical page frame -> set of virtual pages

qOne approach: Inverted page table
ØHash from virtual page -> physical page
ØSpace proportional to # of physical pages

55

56

Inverted Page Table: 1/2
qIn a paging system, each process has its own page

table, which usually has many entries.
qTo save space, we may build a page table which has

one entry for each page frame. Thus, the size of this
inverted page table is equal to the number of
page frames. Why is this saving memory?

qEach entry in an inverted page table has two items:
vProcess ID: the owner of this frame
vPage Number: the page number in this frame

qEach virtual address has three sections:
<process-id, page #, offset>

57

Inverted Page Table: 2/2

pid p # d

pid page #

k

k d

dk

memory

logical address physical address

inverted page table

CPU

This search may be
implemented with hashing

frame #

58

Fragmentation in a Paging
System

qDoes a paging system have fragmentation?
qPaging systems do not have external

fragmentation, because un-used page frames
can be used by other process.

qPaging systems do have internal fragmentation.
qBecause the address space is divided into equal

size pages, all but the last one will be filled
completely. Thus, the last page may have
internal fragmentation and may be 50% full.

59

Protection in a Paging System
qIs it required to protect among users in a paging

system? No, because different processes use
different page tables.

qHowever, we may use a page table length register
that stores the length of a process’s page table. In
this way, a process cannot access the memory
beyond its region. Compare this with the base/limit
register pair.

qWe may add read-only, read-write, or execute bits
in page table to enforce r-w-e permission.

qWe may also add a valid/invalid bit to each page
entry to indicate if a page is in memory.

60

Shared Pages
q Pages may be shared by multiple processes.
q If the code is a re-entrant (or pure) one, a program does

not modify itself, routines can also be shared!

A
B
X

0
1
2

M
N
X

0
1
2

0
1
2

0
1
2

X

A

B

M

N

logical space

logical space

page table

page table

physical address space

Efficient Address Translation

qTranslation lookaside buffer (TLB)
ØCache of recent virtual page -> physical page

translations
ØIf cache hit, use translation
ØIf cache miss, walk multi-level page table

qCost of translation =
ØCost of TLB lookup +

Prob(TLB miss) * cost of page table lookup

61

TLB and Page Table Translation

62

TLB Lookup

63

64

Translation Look-Aside Buffer

Y

Y
N

Y

N

Y

123

374

906
767

222

23

79

199

3
100

999

946

valid

page # frame #

p (page #)

if page # = 767,
Output frame # = 100

If the TLB reports no hit, then we go for a page table look up!

