Address Translation

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

If a machine is expected to be infallible,
It cannot also be intelligent.

Spring 2019 Alan Turing



Address Generation

L Address generation has three stages:
“*Compile: compiler
**Link: linker or linkage editor
“*Load: loader

CRO

source object load
code module module




Three Address Binding Schemes

J Compile Time: If the complier knows the
location a program will reside, it can generate
absolute code. Example: compile-go systems
and MS-DOS -format programs.

dLoad Time: A compiler may not know the
absolute address. So, the compiler generates
relocatable code. Address binding is delayed
until load time.

J Execution Time: If the process may be moved
in memory during its execution, then address
binding must be delayed until run time. This is
the commonly used scheme.



Address Generation: Compile Time
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Linking and Loading
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Address Generation: Static Linking
0 code 0 data

Unresolved Address Table

source target which seg?

+1000 j+1000 code
k+1000 y+500 data 6




10000+1000+; ] Code and data are

= 11000+ :
loaded into memory at
20000+500+y addresses 10000 and
= 20500+y

20000, respectively.

JEvery unresolved
address must be
adjusted.




Main Points

1 Address Translation Concept

» How do we convert a virtual address to a physical
address?

J Flexible Address Translation
> Base and bound
» Segmentation
> Paging
» Multilevel translation
J Efficient Address Translation

» Translation Lookaside Buffers (TLB)
» Virtually and physically addressed caches



Address Translation Goals

1 Memory protection
(1 Memory sharing
»Shared libraries, interprocess communication

1 Sparse addresses
» Multiple regions of dynamic allocation (heaps/stacks)

 Efficiency
» Memory placement
» Runtime lookup
» Compact translation tables

1 Portability



Goals: 1/4

J Memory Protection

(1 Memory Sharing

1 Flexible Memory Placement
1 Sparse Addresses

J Runtime Lookup Efficiency
J Compact Translation Tables
1 Portability
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Goals: 2/4

dMemory Protection
> We need the ability to limit the access of a
process to certain regions of memory
dMemory Sharing
> We want to allow multiple processes to

shared selected regions of memory (e.g.,
shared memory segments)

dFlexible Memory Placement
> We want to allow the operating system the

flexibility to place a process (and each part
of a process) anywhere in physical memory.



Goals: 3/4

A Sparse Addresses

»Many programs have multiple dynamic
memory regions that can change (e.g., heap,
stack, etc.). Modern processors have 64-bit
address spaces, but making the address
translation more complex.

JRuntime Lookup Efficiency

» Hardware address translation occurs on
every instruction fetch and every data load
and save. Thus, translation has to be
efficient and faster than the instructions.
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Goals: 4/4

dCompact Translation Tables

> We need some tables to aid address
translation. These table data structures
have to be compact enough to save memory.

dPortability

» Different hardware implementation use
different choices to implement address
translation. If an operating system is to be
easily portable, it needs to be able hardware
independent.
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Logical, Virtual, Physical Address

dLogical Address: the address generated by the
CPU.

(J Physical Address: the address seen and used by
the memory unit.

Virtual Address: Run-time binding may generate
different logical address and physical address.
In this case, logical address is also referred to as
virtual address. (Logical = Virtual in this
course)
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Address Translation Concept
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Virtually Address Base and

Bounds

Processor’s View Implementation Physical
Memory
Virtual Base
Virtual _Memory Virtual Physical
Address Address v Address
Processor ......... y Processor ............ :, ..................... > @ ......................................... > -
SO ,llllllll i
Bound
g : Raise
...................... » FTTTTTTE 3
@ Exception

Base

Base+
Bound
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Relocation and Protection: 1/2

] Because executables
may run in any area,

base relocation and

bound protection are needed.

(] Recall the base/limit
register pair for
memory protection.

[ It could also be used
for relocation if the
linker generates
executables starting
from 0.

U Linker generates
relocatable code
starting with (0. The
base register contains
the starting address.
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a user program
N~ 4 address starts from 0




Relocation and Protection: 2/2

protection relocation

bound base |:
>
: 9
: -
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CPU : :
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address no physical

not your space
traps to the OS
addressing error
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Relocation: How does it work?

Actual address = a + x

a
base - process moved to a new address k
a - ¥ '
[ 41—
bound Y

Actual add_iiess =k+x




Virtually Addressed Base and
Bound

JPros?
» Simple
» Fast (2 registers, adder, comparator)
» Safe

» Can relocate in physical memory without changing
process

(1Cons?

» Can’t keep program from accidentally overwriting its
own code

» Can’t share code/data with other processes
» Can’t grow stack/heap as needed
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Segmentation: 1/7

1 Segment is a contiguous region of virtual address
space

JEach process has a segment table, and each entry in
the table has a pointer to a segment

(1Segment can be located anywhere in physical
memory, and each segment has: start (i.e., base),
length (i.e., bound), access permission, etc.

1 Therefore, segmentation can be considered as having
multiple base/bound registers stored in a table.

dProcesses can share segments.



Segmentation: 2/7

Processor’s View Implementation Physical
in a special register Memory
Virtual segment table pointer Base 3
Memory ,' Stack
, Processor ! Base+
Virtual ,’ Bound 3
Address | Code : Virtual f Segment Table
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code, data, heap and stack 1 : Base 2
I 1
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Each virtual address is divided into a segment # and an offset in that segment.
Suppose we have 31-bit address, and this address is divided into 16-bit for offset
and 15-bit for segment number. In this way, 16-bit offset means segment max. size

is 216 = 64K bytes and 2'° segments.
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Segmentation: 3/7

A process is divided into segments. The chunks
that a program is divided into which are not
necessarily of the same length.

dEarly systems (MULTICS and Burroughs
B35700/B6700) used segmentation memory
management.

dBurroughs Corporation was founded in 1886, in
1986 merged with Sperry UNIVAC and renamed
Unisys. In the 1970’sm Burroughs developed
some large systems based on the block-based (i.e.,

ALGOL) languages.



Segmentation: 4/7

dBurroughs B5700/B6700 are interesting as their

processors are designed around the language
blocked-structured (e.g., ALGOL, PL/I, etc.).

L Procedures can be declared as local procedures,
which are called by the containing procedure.

(dThus, procedures do have a tree structure.

JEach procedure is in its own segment.
1 A hardware pointer ip is the program counter.

1 Another pointer =P points to the activation record
on a stack.



Segmentation: 5/7

1 There are two sets of pointers, one pointing to the
executing code and the order to the its
corresponding execution environment.

Code blocks Segment
(segments) dictionary

Each “procedure” is in its own segment, and :

3 : the segment directory table has pointers to
: each segment.

J

The left diagram shows 6 procedures
» and the ip pointer indicates that the

WCE - E
= / : processor is executing procedure C! :
E To record
of execution
] :The (3,j) indicates the next instruction:
»is in segment 3 and offset .

:
\

Processor




Segmentation: 6/7

1 There are two sets of pointers, one pointing to the
executing code and the order to the its
corresponding execution environment.

Recordofexecution :lllllllllllllllllllllll,; llllll NGNGesssssssNeN
as a stack : Each “procedure” has its own
segment H . .
——— [l Tl lirk word “environment” (i.e., segment), and
( 5 : the segment Display points to the
b

To (D bwed  § Location of its activation record.
segment —— ink wor H
dictionary .

| dc
:
— ~ ] de | link word

: This diagram shows the corresponding?

—{o—1. = activation record on the stack.

n
| de"top”of 1
stack

7

To “stack trunk” o

: The left diagram shows 5 procedures
: and the EP pointers indicate the
processor is executing procedure C!

B6700
Processor

ip  EP (Display)



Segmentation: 7/7
dPros?

» Can share code/data segments between processes
» Can protect code segment from being overwritten
» Can transparently grow stack/heap as needed

» Can detect if need to copy-on-write

1Cons?

» Complex memory management
v'Need to find chunk of a particular size

» May need to rearrange memory from time to time to
make room for new segment or growing segment

v'External fragmentation: wasted space between chunks
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Segmentation Sharing
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Segmentation Fault

JEach entry in the segment table controls a portion of
the virtual address space.

(1When a request for creating a new segment comes
but the system does not have enough space, a
segment fault is generated. Note that the system
may still have enough memory in total; but, each
piece of free space is smaller than the requested one
(e.g., fragmented).

1 Some systems (e.g., Unix) may also generate a

segment fault if a process accesses an address not in
any existing segment.
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UNIX and Copy on Write

JUNIX

» Makes a complete copy of a process

1Segments allow a more efficient
implementation
» Copy segment table into child
» Mark parent and child segments read-only
» Start child process; return to parent

> If child or parent writes to a segment (ex: stack, heap)
v'trap into kernel
v'make a copy of the segment and resume
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Zero-on-Reference

JHow much physical memory is needed for the
stack or heap?
» ANS: only what is currently in use

(1When program uses memory beyond end of stack
» Segmentation fault into OS kernel
» Kernel allocates some memory
v'How much?
» Zeros the memory
v'avoid accidentally leaking information!
» Modify segment table
» Resume process
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Segmentation Downside

] The number of segments can be large, and their size vary
significantly.

(] What if a request for a 14K segment arrives?
free 12k

[ This is impossible even though the system does
have 37k = 12+10+8+7. allocated

 The free space is not contiguous even though the free 10K

total is good enough for this allocation..

allocated

[ These free slots not in any segment are -

external fragmentation.
(1 We could move the allocated space around to get a

allocated

free 7k

large enough space for the request provided that
each allocated space is relocatable (e.g., segment).
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Fragmentation

dProcesses are loaded and removed from memory,
eventually memory is cut into small holes that are
not large enough to run any incoming process.

1 Free memory holes between allocated ones are
called external fragmentation.

11t is unwise to allocate exactly the requested
amount of memory to a process, because of address
boundary alignment requirements or the minimum
requirement for memory management.

JThus, memory that is allocated to a partition, but is
not used, is an internal fragmentation.
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External/Internal Fragmentation

allocated area
external
used fragmentation
/ used
used un-used
used
used

internal fragmentation

used
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Compaction for External
Fragmentation

L If processes are relocatable, we may move used
memory blocks together to make a larger free
memory block.

used used

used
used used
used |/ used
used

used used 35




Paging: 1/2

(1 The physical memory is divided into fixed-sized
page frames, or frames.

(1 The virtual address space is also divided into
blocks of the same size, called pages.

(1 When a process runs, its pages are loaded into
page frames.

1 A page table stores the page numbers and their
corresponding page frame numbers, etc.

(1 The virtual address is divided into two fields:
page number and offset (in that page).
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Paging: 2/2

logical address
P d | 0
page # offset within the page 1
page table 3
logical memory 0 y .
0 1 2
1| 4 2 2 =1
3 5
2 6
3 7
8
R . 9
: Logical address <1, d> translates to physical address <2, d>
: because page 1 is logical space is stored in page frame 2. 10

physical memory
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Paged Translation (Abstract)
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Address Translation
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Paged Translation (Implement)
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Translation Example: 1/3

1 Suppose we have a logical/virtual address x, and
suppose the page size is y.

1 Then, x/y is the group (of size y) x is in, and x%y
is the offset within that (x/y) group.

JExample: Suppose y =16 and x =76. Then, x/y
=76/16 = 4. Therefore, if 76 elements are
grouped into 16 each, then 76 is in the 4" group.

Because 76%16 = 12, 76 is the 12t element in the
4th oroup.
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Translation Example: 2/3

(] Suppose page size uses k bits. The address of a page is
from 0 to 2*-1. If page size is 4K = 212, then the address in
a page is from 0 to 212-1=4095.

U Dividing by 2 can be achieved by shifting to the right. For
example, for 13,,=1101,, dividing 13 by 2 is obtained by
shifting 1101, to the right 1 bit yielding 110, = 6,,. Thus,
dividing a number x by 2* can be obtained by shifting x to
the right k bits.

U Example: Suppose an address 11011001101110, is
divided by 28. The result is 110110,, which is the page
number. The remainder 01101110, is the offset in this page.

 Conclusion: Given a logical/virtual address of n bits and
page size 2%, the page number of this address is the first n-k
bits and the offset in this page is the last k bits.
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Translation Example: 3/3

page table

3

o W NN E O

X
X
6
1
4

4
2 =16

page frames

Oy U1 & W N H O

12
2 =4096

15000 (virtual address).

15000/4096:
quotient = 3 (page #)
remainder = 2712 (offset)

From page table,
page #3 is in frame #6

Real address
= (frame#)*4096+offset
= 6*¥4096 + 2712 = 27288

10000 (virtual address).

10000/4096:
quotient = 2 (page #)
remainder = 1808 (offset)

4 bits

12 bits

From page table:
page 2 not in memory

16 bit address

a page fault occurs
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Hardware Support

1 Page table may be stored in special registers if the
number of pages is small.

(1 Page table may also be stored in physical memory,
and a special register, page-table base register, points
to the page table.

J Use translation look-aside buffer (TLB). TLB stores
recently used pairs (page #, frame #). It compares
the input page # against the stored ones. If a match
is found, the corresponding frame # is the output.
Thus, no page table access is required.

1 This comparison is done in parallel and is fast.
1 TLB normally has 64 to 1,024 entries.
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Paging Questions

1 With paging, what is saved/restored on a process
context switch?

> pointer to page table, size of page table
»page table itself is in main memory
1 What if page size is very small?
1 What if page size is very large?
» Internal fragmentation: if we don’t need
all of the space inside a fixed size chunk
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Paging and Copy on Write

1 Can we share memory between processes?

> Set entries in both page tables to point to same page
frames

» Need core map of page frames to track which processes
are pointing to which page frames (e.g., reference count)

JUNIX with copy on write

» Copy page table of parent into child process

» Mark all pages (in new and old page tables) as read-only
» Trap into kernel on write (in child or parent)

» Copy page

» Mark both as writeable

» Resume execution
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Fill On Demand

dCan I start running a program before its code is in
physical memory?

»>Set all page table entries to invalid

> When a page is referenced for first time, kernel
trap

» Kernel brings page in from disk
»Resume execution

» Remaining pages can be transferred in the
background while program is running



Sparse Address Spaces

1 Might want many separate dynamic segments
» Per-processor heaps
» Per-thread stacks
» Memory-mapped files
»Dynamically linked libraries
J What if virtual address space is large?
»>32-bits, 4KB pages => 500K page table entries
» 64-bits => 4 quadrillion page table entries
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Multi-level Translation

1 Tree of translation tables
» Paged segmentation
» Multi-level page tables
» Multi-level paged segmentation

 Fixed-size page as lowest level unit of allocation
» Efficient memory allocation (compared to segments)
» Efficient for sparse addresses (compared to paging)
» Efficient disk transfers (fixed size units)
» Easier to build translation lookaside buffers
» Efficient reverse lookup (from physical -> virtual)
» Variable granularity for protection/sharing
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Paged Segmentation

1 Process memory is segmented
1 Segment table entry:
> Pointer to page table
> Page table length (# of pages in segment)
» Access permissions
1 Page table entry:
»Page frame
» Access permissions
1 Share/protection at either page or segment-level
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Paged Segmentation
(Implementation)

Physical
Memory
Processor
Virtual
Address
P Segment Page# Offset .............................
, ................. 1 F— )® -------- > Exception
Segmei}t Table
: Page Table  Sizge  Access
Reesesnassns > Read :
.. R/w ....... 2
RwW |
Page Table R/W
i Frame  Access :
; Read Physical ......:
S Read Address |
U, SO F—— >l Frame Offset




Multilevel Paging

Processor
Virtual
Address
~>| Index1 | Index2 | Index 3 Offset
8-:bit 6-bit 6-!ait 12-bit
: : : Level 1

................................................

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..

0 There are 256, 64 and 64 entries
in level 1, 2, and 3 page tables.
O Page size is 4k = 212 = 4,096 bytes

‘IIIIIIIII..

O Virtual space size = (28%26*26 pages)*4K = 232 bytes

apsssnmnnnn®

..IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII"

Physical
Memory
Physical
Address ..
Frame Offset |- >
Level 2
Level 3
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x86 Multilevel Paged

Segmentation
[ Global Descriptor Table (segment table)

» Pointer to page table for each segment
» Segment length
» Segment access permissions

» Context switch: change global descriptor table register
(GDTR, pointer to global descriptor table)

(1 Multilevel page table
» 4KB pages; each level of page table fits in one page
» 32-bit: two level page table (per segment)
» 64-bit: four level page table (per segment)
» Omit sub-tree if no valid addresses
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Multilevel Translation

JPros:

» Allocate/fill only page table entries that are in
use

»Simple memory allocation

»Share at segment or page level
JCons:

> Space overhead: one pointer per virtual page
»Two (or more) lookups per memory reference
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Portability

1 Many operating systems keep their own memory
translation data structures

> List of memory objects (segments)

» Virtual page -> physical page frame

»Physical page frame -> set of virtual pages
1 One approach: Inverted page table

» Hash from virtual page -> physical page

»Space proportional to # of physical pages



Inverted Page Table: 1/2

11In a paging system, each process has its own page
table, which usually has many entries.

1 To save space, we may build a page table which has
one entry for each page frame. Thus, the size of this
inverted page table is equal to the number of
page frames. Why is this saving memory?

JEach entry in an inverted page table has two items:

“*Process ID: the owner of this frame
“*Page Number: the page number in this frame

(1 Each virtual address has three sections:

<process-id, page #, offset>
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Inverted Page Table: 2/2

memory

logical address physical address
| pid| p#| d k d
. 7 y T
inverted page table
k
> pid | page # fframe #A....... ;
,‘-...- *Nusnnnnnnnnnnnnnnnnns .
’
’
’

This search may be /
implemented with hashing




Fragmentation in a Paging
System

(1 Does a paging system have fragmentation?

JPaging systems do not have external
fragmentation, because un-used page frames
can be used by other process.

JPaging systems do have internal fragmentation.

1 Because the address space is divided into equal
size pages, all but the last one will be filled
completely. Thus, the last page may have
internal fragmentation and may be 50% full.
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Protection in a Paging System

s it required to protect among users in a paging
system? No, because different processes use
different page tables.

1 However, we may use a page table length register
that stores the length of a process’s page table. In
this way, a process cannot access the memory
beyond its region. Compare this with the base/limit
register pair.

1 We may add read-only, read-write, or execute bits
in page table to enforce r-w-e permission.

1 We may also add a valid/invalid bit to each page
entry to indicate if a page is in memory.
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Shared Pages

(] Pages may be shared by multiple processes.

L If the code is a re-entrant (or pure) one, a program does
not modify itself, routines can also be shared!

physical address space

logical space page table

o A 0 | M
1 B 1 -1
2 -~

X 2 B

logical space
0
1

2

0
1
2




Efficient Address Translation

JTranslation lookaside buffer (TLB)

» Cache of recent virtual page -> physical page
translations

»If cache hit, use translation

> If cache miss, walk multi-level page table
 Cost of translation =

» Cost of TLB lookup +

Prob(TLB miss) * cost of page table lookup
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TLB and Page Table Translation

Virtual
Address
Processor |-+ yrossosssnnd > TLB
A Hit
; Fr;me
Offset
Data

Virtual
Address

Physical
Address

Exception

Physical
Memory

.
..................................................................................................................
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TLB Lookup

Virtual
Address

Page# Offset

...............

Translation Lookaside Buffer (TLB)

Virtual Page :
Page Frame  Access Physical :

Physical
Memory

,@ ............ Address v
Matching Entry ,@ 3 Frame Offset

Page Table
’@ ” Lookup
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Translation Look-Aside Buffer

p (page #)

page # frame #
1Y|123| 79
1Y| 374| 199
'l N| 906 3
1Y|767| 100
I N| 222 | 999
1Yl 23| 946

>
if page # =767,
Output frame # = 100

If the TLB reports no hit, then we go for a page table look up!
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