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Virtual Memory Management

Spring 2019

The danger of computers becoming like humans
is not as great as the danger of humans becoming like computers.

Konrad Zuse

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene. 



Definitions
qCache

ØCopy of data that is faster to access than the original
ØHit: if cache has copy
ØMiss: if cache does not have copy

qCache block
ØUnit of cache storage (multiple memory locations)

qTemporal locality
ØPrograms tend to reference the same memory locations 

multiple times
ØExample: instructions in a loop

qSpatial locality
ØPrograms tend to reference nearby locations
ØExample: data in a loop
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Locality of Reference

qDuring any phase 
of execution, the 
process references 
only a relatively 
small fraction of 
pages.



Main Points

qCan we provide the illusion of near infinite 
memory in limited physical memory?
ØDemand-paged virtual memory
ØMemory-mapped files

qHow do we choose which page to replace?
ØFIFO (First-In-First-Out), MIN (Optimal), 

LRU (Least Recently Used), LFU (Least 
Frequently Used), Second Chance, Clock
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Observations

qA complete program does not have to be in 
memory, because
Øerror handling codes are not frequently used
Øarrays, tables, large data structures usually 

allocate memory more than necessary and 
many parts are not used at the same time

Øsome options and cases may be used rarely
qIf they are not needed, why must they be in 

memory?
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Benefits
qProgram length is not restricted to real 

memory size.  That is, virtual address size can 
be larger than physical memory size.

qCan run more programs because space 
originally allocated for the un-loaded parts can 
be used by other programs.

qSave load/swap I/O time because we do not 
have to load/swap a complete program.
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Virtual Memory
qVirtual memory is the separation of user logical 

memory from physical memory.
qThis permits to have extremely large virtual 

memory, which makes programming large 
systems easier.

qBecause memory segments can be shared, this 
further improves performance and save time.

qVirtual memory is commonly implemented 
with demand paging, demand segmentation or 
demand paging+segmentation.
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Demand Paging
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Demand Paging (Before)
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q If a process accesses a page that is not in physical memory,
a page fault (trap) is generated and trapped to the kernel.

q The kernel will find the needed page and load it into physical memory.
q The kernel also modifies the page table.

this page is not in physical memory



Demand Paging (After)
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q The kernel finds the page in virtual memory, brings it into physical memory.
q If there is no available page frame available, the kernel find an “occupied” one.
q Suppose page A was chosen.  The kernel brings page B in to replace page A.
q The kernel update page table.

bring page B into physical memory,
replacing the original page A   

page A becomes invalid

page B becomes valid
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Address Translation
qAddress translation from a virtual address to a 

physical address is the same as a paging system.
qHowever, there is an additional check.  If the needed 

page is not in physical memory (i.e., its valid bit is 
not set), a page fault (i.e., a trap) occurs.

qIf a page fault occurs, we need to do the following:
ØFind an unused page frame.  If no such page 

frame exists, a victim must be found and evicted.
ØWrite the old page out and load the new page in.
ØUpdate both page tables.
ØResume the interrupted instruction.
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Details of Handling a Page Fault

Trap to the OS                          // a context switch occurs
Make sure it is a page fault;
If the address is not a legal one then

address error, return
Find a page frame                    // page replacement algorithm
Write the victim page back to disk    // page out (if modified)
Load the new page from disk // page in
Update both page tables         // two pages are involved!
Resume the execution of the interrupted instruction
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Hardware Support

qPage Table Base Register, Page Table Length 
Register, and a Page Table.  

qEach entry of a page table must have a 
valid/invalid bit.  Valid means that that page is 
in physical memory.  The address translation 
hardware must recognize this bit and generate 
a page fault if the valid bit is not set.

qSecondary Memory: use a disk.
qOther hardware components may be needed 

and will be discussed later.
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Too Many Memory Accesses?!
qEach address reference may use at least two

memory accesses, one for page table look up and 
the other for accessing the page.  It may be worse!  
See below:

ADD A, B, C

A

B

C

How many memory accesses are there?
May be more than eight!

Some CISC architecture machine instructions
and operands can be rather long that
could cross page boundary. 
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Performance Issue: 1/2
qLet p be the probability of a page fault, the page 

fault rate, 0 £ p £ 1.
qThe effective access time is

(1-p)*memory access time + p*page fault time
qThe page fault rate p should be small, and 

memory access time is usually between 10 and 200 
nanoseconds.

qTo complete a page fault, three components are 
important:
ØServe the page-fault trap
ØPage-in and page-out, a bottleneck
ØResume the interrupted process
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Performance Issue: 2/2
qSuppose memory access time is 100 nanoseconds, 

paging requires 25 milliseconds (software and 
hardware).  Then, effective access time is

(1-p)*100 + p*(25 milliseconds)
= (1-p)*100 + p*25,000,000 nanoseconds
= 100 + 24,999,900*p nanoseconds

qIf page fault rate is 1/1000, the effective access time 
is 25,099 nanoseconds = 25 microseconds.  It is 250 
times slower!  

qIf we wish only 10% slower, effective access time is 
no more than 110 and p=0.0000004.
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Three Important Issues in V.M.
qPage tables can be very large.  If an address has 

32 bits and page size is 4K, then there are 
232/212=220=(210)2= 1M entries in a page table per 
process!

qVirtual to physical address translation must be 
fast.  This is done with TLB.  Remove any TLB 
entries (i.e., copies of now invalid page table 
entry).

qPage replacement. When a page fault occurs and 
there is no free page frame, a victim page must 
be found.  If the victim is not selected properly, 
system degradation may be high.



How Do We Know If Page Has 
Been Modified?

qEvery page table entry has some bookkeeping 
ØHas page been modified?

üSet by hardware on store instruction
üIn both TLB and page table entry

ØHas page been recently used?
üSet by hardware on in page table entry on every TLB 

miss
qBookkeeping bits can be reset by the OS kernel

ØWhen changes to page are flushed to disk
ØTo track whether page is recently used
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Keeping Track of Page 
Modifications (Before)
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Both TLB and page table have the same entry, 
which shows the address to page A.

page not modified

There is a “dirty” bit indicating 
whether a page is modified

Some systems have a reference bit
indicating whether a page has been
used since it was loaded into memory.
Whenever a location in a page is used
(e.g., load, save, etc.), the reference bit
is set.  Of course, it is modified, the dirty
and reference bits are all set.



Keeping Track of Page 
Modifications (After)
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Both TLB and page table have the same entry, 
which shows the address to page A.

page modified

This page has to be written
back to disk if it is replaced
By another page



Modified/Dirty & 
Referenced/Used Bits

qMost machines keep dirty/use bits in the page 
table entry

qPhysical page is
ØModified if any page table entry that points to it 

is modified (Modified/Dirty bit)
ØRecently used if any page table entry that points 

to it is recently used (Referenced/Used bit)
qOn MIPS, simpler to keep dirty/use bits in the 

core map
ØCore map: map of physical page frames
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Page Replacement: 1/2
qThe following is a basic scheme

ØFind the desired page on disk
ØFind a free page frame in physical memory

Øif there is a free page frame, use it
Øif there is no free page frame, use a page-

replacement algorithm to find a victim page
Øwrite this victim page back to disk and update 

the page table and page frame table
ØRead the desired page into the selected frame and 

update page tables and page frame table
ØRestart the interrupted instruction
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Page Replacement: 2/2
qIf there is no free page frame, two page transfers (i.e., 

page-in and page-out) may be required.
qA modified bit may be added to a page table entry.  The 

modified bit is set if that page has been modified (i.e., 
storing info into it).  It is initialized to 0 when a page is 
loaded into memory.

qThus, if a page is not modified (i.e., modified bit = 0), it 
does not have to be written back to disk.

qSome systems may also have a referenced bit.  When a 
page is referenced (i.e., reading or writing), its 
referenced bit is set.  It is initialized to 0 when a page is 
brought in.

qBoth bits are set by hardware automatically.
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Page Replacement Algorithms
qWe shall discuss the following page replacement 

algorithms:
ØFirst-In-First-Out - FIFO
ØThe Least Recently Used – LRU
ØThe Optimal Algorithm
ØThe Second Chance Algorithm
ØThe Clock Algorithm

qThe fewer number of page faults an algorithm 
generates, the better the algorithm performs.

qPage replacement algorithms work on page 
numbers.  A string of page numbers is referred to 
as a page reference string.
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The FIFO Algorithm
qThe FIFO algorithm always selects the “oldest” 

page to be the victim.  Columns organized by “age”.
0     1     2     3     0     1     4    0     1    2     3     4

0 0 0 3 3 3 4 4 4 4 4 4
1 1 1 0 0 0 0 0 2 2 2

2 2 2 1 1 1 1 1 3 3
page fault=9 miss ratio=9/12=75% hit ratio = 25%

3 frames

0 0 0 0 0 0 4 4 4 4 3 3

1 1 1 1 1 1 0 0 0 0 4

2 2 2 2 2 2 1 1 1 1

3 3 3 3 3 3 2 2 2

0     1     2     3     0     1     4    0     1    2     3     4

page fault=10 miss ratio=10/12=83.3% hit ratio = 16.7%

4 frames

new

new

oldest

oldest
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Belady Anomaly
qIntuitively, increasing the number of page frames 

should reduce the number of page faults.
qHowever, some page replacement algorithms do not 

satisfy this “intuition.”  The FIFO algorithm is an 
example.

qBelady Anomaly: Page faults may increase as 
the number of page frames increases.

qFIFO was used in DEC VAX-78xx series and NT 
because it is easy to implement: append the new 
page to the tail and select the head to be a victim!
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The LRU Algorithm: 1/2
qThe LRU algorithm always selects the page that 

has not been used for the longest period of time.
0     1     2     3     0     1     4    0     1    2     3     4

0 0 0 3 3 3 4 4 4 2 2 2
1 1 1 0 0 0 0 0 0 3 3

2 2 2 1 1 1 1 1 1 4
page fault=10 miss ratio=10/12=83.3% hit ratio = 16.7%

3 frames

0 0 0 0 0 0 0 0 0 0 0 4

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 4 4 4 4 3 3

3 3 3 3 3 3 2 2 2

0     1     2     3     0     1     4    0     1    2     3     4

page fault=8 miss ratio=8/12=66.7% hit ratio = 33.3%

4 frames
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The LRU Algorithm: 2/2
q The memory content of 3-frames is a subset of the memory 

content of 4-frames.  This is the inclusion property.  With 
this property, Belady anomaly never occurs. Why?

0     1     2     3     0     1     4    0     1    2     3     4
0 0 0 3 3 3 4 4 4 2 2 2

1 1 1 0 0 0 0 0 0 3 3
2 2 2 1 1 1 1 1 1 4

0 0 0 0 0 0 0 0 0 0 0 4

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 4 4 4 4 3 3

3 3 3 3 3 3 2 2 2

0     1     2     3     0     1     4    0     1    2     3     4
extra
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The Optimal Algorithm: 1/2
qThe optimal algorithm always selects the page that 

will not be used for the longest period of time.
0     1     2     3     0     1     4    0     1    2     3     4

0 0 0 0 0 0 0 0 0 2 2 2
1 1 1 1 1 1 1 1 1 3 3

2 3 3 3 4 4 4 4 4 4
page fault=7 miss ratio=7/12=58.3% hit ratio = 41.7%

3 frames

0 0 0 0 0 0 0 0 0 0 3 3

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 4 4 4 4 4 4

0     1     2     3     0     1     4    0     1    2     3     4

page fault=6 miss ratio=6/12=50% hit ratio = 50%

4 frames
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The Optimal Algorithm: 2/2
qThe optimal algorithm always delivers the fewest 

page faults, if it can be implemented.  It also satisfies 
the inclusion property (i.e., no Belady anomaly).

0     1     2     3     0     1     4    0     1    2     3     4
0 0 0 0 0 0 0 0 0 2 2 2

1 1 1 1 1 1 1 1 1 3 3
2 3 3 3 4 4 4 4 4 4

0 0 0 0 0 0 0 0 0 0 3 3

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 4 4 4 4 4 4

0     1     2     3     0     1     4    0     1    2     3     4
extra
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The Inclusion Property
qDefine the following notations:

ØP = <p1, p2, …, pn> : a page trace
Øm : the number of page frames
ØMt(P, a, m) : the memory content after page pt is 

referenced with respect to a page replacement 
algorithm a.

qA page replacement algorithm satisfies the 
inclusion property if Mt(P,a,m) Í Mt(P,a,m+1)
holds for every t.

qHomework: Inclusion property means no Belady 
anomaly.
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LRU Revisited
qPages on each column are ordered from most 

recently used to least recently used.
0     1     2     3     0     1     4    0     1    2     3     4

0 1 2 3 0 1 4 0 1 2 3 4
0 1 2 3 0 1 4 0 1 2 3

0 1 2 3 0 1 4 0 1 2
page fault=10 miss ratio=10/12=83.3% hit ratio = 16.7%

3 frames

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 0 1 4 0 1 2 3

0 1 2 3 0 1 4 0 1 2

0 1 2 3 3 3 4 0 1

0     1     2     3     0     1     4    0     1    2     3     4

page fault=8 miss ratio=8/12=66.7% hit ratio = 33.3%

4 frames

Do the same for the optimal algorithm MIN

most recently used

most recently used

least recently used

least recently used
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LRU Approximation Algorithms
qFIFO has Belady anomaly, the Optimal algorithm 

requires the knowledge in the future, and the LRU 
algorithm requires accurate info of the past.

qThe optimal and LRU algorithms are difficult to 
implement, especially the optimal algorithm.  Thus, 
LRU approximation algorithms are needed.  We 
will discuss three:
ØThe Second-Chance Algorithm
ØThe Clock Algorithm
ØThe Enhanced Second-Chance Algorithm 



34

Second-Chance Algorithm: 1/3
qThe second chance algorithm is a FIFO algorithm.  

It uses the referenced bit of each page.
qThe page frames are in page-in order (linked-list).
qIf a page frame is needed, check the oldest (head):

ØIf its referenced bit is 0, take this one
ØOtherwise, clear the referenced bit, move it to 

the tail, and (perhaps) set the current time.  This 
gives this page frame a second chance.

qRepeat this procedure until a 0 referenced bit page 
is found.  Do page-out and page-in if necessary, and 
move it to the tail.

qProblem: Page frames are moved too frequently.
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Second-Chance Algorithm: 2/3
new page = X rc = referenced and changed/modified bit pair
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Second-Chance Algorithm: 3/3
new page = X
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The Clock Algorithm: 1/2
qIf the second chance algorithm is implemented 

with a circular list, we have the clock algorithm.
qA “next” pointer is needed.
qWhen a page frame is needed, we examine the 

page under the “next” pointer:
vIf its referenced bit is 0, take it
vOtherwise, clear the reference bit and advance 

the “next” pointer.
qRepeat this until a 0 reference bit frame is found.
qDo page-in and page-out, if necessary
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The Clock Algorithm: 2/2
new page = X

Y Y
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Enhanced Second-Chance 
Algorithm: 1/5

qFour page lists based on their reference-modify 
bits (r,c) are used:
vQ00 - pages were not recently referenced and 

not modified, the best candidates!
vQ01 - pages were changed but not recently 

referenced.  Need a page-out. 
vQ10 - pages were recently used but clean.
vQ11 - pages were recently used and modified.  

Need a page-out.  
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Enhanced Second-Chance 
Algorithm: 2/5

qWe still need a “next” pointer.
qWhen a page frame is needed:

vDoes the “next” frame has 00 combination?  If 
yes, victim is found.  Otherwise, reset the 
referenced bit and move this page to the 
corresponding list (i.e., Q10 or Q11).

vIf Q00 becomes empty, check Q01.  If there is a 
frame with 01 combination, it is the victim.  
Otherwise, reset the referenced bit and move the 
frame to the corresponding list (i.e., Q10 or Q11).

vIf Q01 becomes empty, move Q10 to Q00 and 
Q11 to Q01.  Restart the scanning process.
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Enhanced Second-Chance 
Algorithm: 3/5

1
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3
4
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10
11
11

5
6
7

10
11
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9

11
11

10
11
12

11
11
11

Q00 Q01 Q10 Q11

2

5
6
7

10
11
10

8
9

11
11

10
11
12

11
11
11

Q00 Q01 Q10 Q11

2 00

1
3
4

01
01
01
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Enhanced Second-Chance 
Algorithm: 4/5

2

5
6
7

10
11
10

8
9

11
11

10
11
12

11
11
11

Q00 Q01 Q10 Q11

2 00

1
3
4

01
01
01

10
11
12

11
11
11

1
3
4

01
01
01

6 01

2

8
9

11
11

2 00
5
7

00
00

Q00 Q01 Q10 Q11
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10
11
12

11
11
11

1
3
4

01
01
01

6 01

2

8
9

11
11

2 00
5
7

00
00

Q00 Q01 Q10 Q11

10
11
12

11
11
11

1
3
4

01
01
01

6 01

22 00
5
7

00
00

Q00 Q01 Q10 Q11

This algorithm was used
in IBM DOS/VS and
MacOS!

8
9

01
01
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Other Important Issues
qGlobal vs. Local Allocation
qLocality of Reference
qThrashing
qThe Working Set Model
qThe Working Set Clock Algorithm
qPage-Fault Frequency Replacement Algorithm
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Global vs. Local Replacement
qGlobal replacement allows a process to select a 

victim from the set of all page frames, even if the 
page frame is currently allocated to another process.

qLocal replacement requires that each process 
selects a victim from its own set of allocated frames.

qWith a global replacement, the number of frames 
allocated to a process may change over time, and, as 
a result, paging behavior of a process is affected by 
other processes and may be unpredictable.  
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Global vs. Local: A Comparison
qWith a global replacement algorithm, a process cannot 

control its own page fault rate, because the behavior of 
a process depends on the behavior of other processes.  
The same process running on a different system may 
have a totally different behavior.

qWith a local replacement algorithm, the set of pages of 
a process in memory is affected by the paging behavior 
of that process only.  A process does not have the 
opportunity of using other less used frames.  
Performance may be lower.

q With a global strategy, throughput is usually higher, 
and is commonly used.
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Locality of Reference

qDuring any phase 
of execution, the 
process references 
only a relatively 
small fraction of 
pages.



48

Thrashing
qThrashingmeans a process spends more time 

paging than executing (i.e., low CPU utilization 
and high paging rate).

qIf CPU utilization is too low, the medium-term 
scheduler is invoked to swap in one or more 
swapped-out processes or bring in one or more 
new jobs.  The number of processes in memory 
is referred to as the degree of 
multiprogramming.



49

Degree of Multiprogramming: 
1/3

qWe cannot increase the degree of multiprogramming 
arbitrarily as  throughput will drop at certain point 
and thrashing occurs.

qTherefore, the medium-term scheduler must 
maintain the optimal degree of multiprogramming.
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Degree of Multiprogramming: 
2/3

1. Suppose we use a global strategy and the CPU 
utilization is low. The medium-term scheduler 
will add a new process.

2. Suppose this new process requires more pages.  It 
starts to have more page faults, and page frames 
of other processes will be taken by this process.

3. Other processes also need these page frames.  
Thus, they start to have more page faults.

4. Because pages must be paged- in and out, these 
processes must wait, and the number of processes 
in the ready queue drops.  CPU utilization is 
lower.
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Degree of Multiprogramming: 
3/3

5. Consequently, the medium-term scheduler brings 
in more processes into memory.  These new 
processes also need page frames to run, causing 
more page faults.  

6. Thus, CPU utilization drops further, causing the 
medium-term scheduler to bring in even more 
processes.

7. If this continues, the page fault rate increases 
dramatically, and the effective memory access 
time increases.  Eventually, the system is 
paralyzed because the processes are spending 
almost all time to do paging!
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The Working Set Model: 1/4
qThe working set of a process at virtual time t, 

written as W(t,q), is the set of pages that were 
referenced in the interval (t- q, t], where q is the 
window size.  These are “most recently used” 
pages, which can be ordered in the LRU way.

qq = 3.  The result is identical to that of LRU:

0     1     2     3     0     1     4    0     1    2     3     4
0 0 0 3 3 3 4 4 4 2 2 2

1 1 1 0 0 0 0 0 0 3 3
2 2 2 1 1 1 1 1 1 4

page fault=10 miss ratio=10/12=83.3% hit ratio = 16.7%
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The Working Set Model: 2/4
qHowever, the result of q = 4 is different from that of 

LRU.

0 0 0 0 0 0 0 0 0 0 0 4

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 4 4 4 4 3 3

3 3 3 3 2 2 2

0     1     2     3     0     1     4    0     1    2     3     4

page fault=8 miss ratio=8/12=66.7% hit ratio = 33.3%

only three pages here
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The Working Set Model: 3/4
qThe Working Set Policy: Find a good q, and keep 
W(t,q) in memory for every t.   

qWhat is the best value of q?  This is a system tuning 
issue.  This value can change as needed from time to 
time.
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The Working Set Model: 4/4
qUnfortunately, like LRU, the working set policy 

cannot be implemented directly, and an 
approximation is necessary.

qBut, the working set model does satisfy the 
inclusion property. 

qA commonly used algorithm is the Working Set 
Clock algorithm, WSClock.  This is a good and 
efficient approximation.
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The WSClock Algorithm

The to-be-cleaned pages
are just in a list.  If before
a page is written back to VS
it is used again, it will be
brought back to WS. 
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Example VMOS: 1/2
qVMOS (Virtual Memory Operating System) 

was an early OS (1970s) using working set.*

qThis OS is designed for UNIVAC Spectra 70, 

similar to IBM System/370.

qTime for adjusting working set:

1. Page fault

2. A process finishes executing 4000 instruction.  

This time is the window size !.

3. For a process waiting for I/O, unless its 

working set has been adjusted within ! time, 

its working set has to be adjusted.
*M. H. Fogel, The VMOS Paging Algorithm: A Practical Implementation of the Working Set Model,

SIGOPS, Vol. 8 (1974), pp. 8-17. 



58

Example VMOS: 2/2
Starting from 

1st page

any unchecked
Page?

Referenced?

Find that page

X = t - OF

X ≥ max

X ≥ min

Largest X?
Yes, mark this page

Mark not in
memory & 

move to RO or RW

Reset R-bit
OF = t

STOP
no

yes

yes

no

no

no

yes

yes

referenced page: reset R-bit giving 2nd chance
OF = interrupted time (starting time)

not referenced:
X = the gap between last and this

reset time

OF = last reset time
t = current time

max = 12000 instructions
min = 3000 instructions
! = 4000 instructions

has not been used for long 
enough, ready to be removed 

page not used;
but not long enough
(max > X ≥ min)

max > X ≥ min:
page not used, but not long enough
find the largest X is the LRU page!

RO: only referenced
RW: modified 
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Virtual Relocation
Virtual Memory in a VM: 1/4

RM: real machine
VM: virtual machine
VS: virtual memory

VM1’s VS

VM2’s VS

page-in

page-in

What is the VM supports
virtual memory? 

A page-in in a VM brings
its page into its VS; but,
Actually the page should
be brought to RMa page-in in VM must have

its page in RM to be used!

Figures from my 1984 OS book
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Virtual Relocation
Virtual Memory in a VM: 2/4

VM’s VS

VM’s VS

From RM’s point of view, VM
is just something in RM’s VS.

RM has its segment table SGT,
page table (PGT) and page
frame table FMT for its own
virtual memory management.  

Now, VM uses page 8 of segment 2.
Because this page is not in memory,
It has to be paged-in to the shaded frame.

The VM starts page-in, moving the
needed page from VM’s VS into VM.

But, because this page has to be in RM 
to be used, the RM allocates a page 
Frame for this page and modifies RM’s 
page table.

SGT: Segment Table, PGT: Page Table, FMT: Page Frame Table
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Virtual Relocation
Virtual Memory in a VM: 3/4

When a VM executes on a RM, which segment table
and page tables should be used?

The RM tables cannot be the candidate
because they are used to manage the VM.

Tables in VM cannot be used either because that VM
runs on RM rather than a VM.

In fact, the RM builds a set of shadow tables 
for each VM.

Shadow tables that describes
The VM’s memory usages

SGT: Segment Table
PGT: Page Table
FMT: Page Frame Table 

VM’s VS

Real Control Register
Points to segment table

Virtual Control Register
Points to VM’s segment table
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Virtual Relocation
Virtual Memory in a VM: 4/4

The control program running on RM builds a set of shadow pages
Tables that are identical to those in the VM.

But, the page frame numbers are different.  The page table in VM
points to the page frame in VM, but the shadow page table  in RM
points to the real page frame.

Real Control Register
Points to segment table

Virtual Control Register
Points to VM’s segment table

VM’s VS

points to the real
page in memory  

points to the virtual
page in virtual storage  

This set of shadow tables have
the “structure” as those in the VM;
but, they point to REAL things.
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Virtual Memory Management in 
Control Program (CP): 1/5

qThe control program CP of VM/370 views each 
virtual machine as a process.

qCP uses a second chance page replacement and 
working set.

qAll page frames are in two lists FREELIST and 
FLUSHLIST.

qFREELIST has all free page frames.
q If for some reason a VM cannot hold its page frames, 

all of its page frames are moved to FLUSHLIST.  
However, page tables are not modified, only showing 
these pages are not available to use.
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Virtual Memory Management in 
Control Program (CP): 2/5

q If the RM needs a page frame, then …
ØTake one from FREELIST
ØOr, if FREELIST has no page frame available, 

then take one from FLUSHLIST.
ØOr, if FLUSHLIST is also empty, then search the 

used page frame with the clock algorithm.
ØNote that page table entry has to be modified and 

page-out may be needed.
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Virtual Memory Management in 
Control Program (CP): 3/5

qA VM May or may not be allowed to get page frames.
qWhen a VM is allowed to get pages, the memory 

management MM component in RM monitors paging 
activity of this VM.

qOnce this VM causes a page fault, MM monitors the 
number of in memory page of this VM, until this VM 
becomes not allowed to get page frames.

qAt this moment, RM calculates  the Average 
Resident Pages (ARP) of this VM.

qNote that among these page faults, some causes 
removing of its own page, while the others steal other 
VM’s pages.
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Virtual Memory Management in 
Control Program (CP): 4/5

qThe MM in CP determines the rate of page faults of 
this VM that requires stealing other VM’s pages.

q If this rate is larger than 8%, this rate is recorded in 
S.  Otherwise, S = 0.

qDuring this period (i.e., the time a VM allowed to get 
pages), let P be the average life span: time span in 
this period divided by the number of page faults.

qLet I be the global average life span: total CPU time 
so far divided by the number of page faults.
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Virtual Memory Management in 
Control Program (CP): 5/5

qThe MM component of CP uses the following to 
predict the average resident page in the next period:

qThis prediction is usually close to the actual working 
set size except for some odd situations.  Note that the 
newARP has at least 5 pages.

q If system performance goes down because of this 
VM’s high page faults (I > P and/or S > 0), the new 
prediction is larger.

qOtherwise, I may be less than P, and hence the new 
prediction of ARP may be smaller.



Cache Concept (Read)
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q Memory read requests are sent to the cache
q The cache either returns the value stored at that memory location,

or it forwards the request onward to the next level cache

cache hit

cache miss



Memory Hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core
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Cache Concept (Write)
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q Memory requests are buffered and then sent to the cache in the background
q Typically, the cache stores a block of data, so each write ensures that the

rest of the block is in the cache before updating the cache
q If the cache is write through, the data is then sent onward to the next level

of cache or memory.

Cache write through:
Data is written to the cache and memory 
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Memory Hierarchy
qCache memory can be between CPU and memory, 

external device and memory, etc.
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Cache Memory: 1/12
q It is possible to build a computer using only static 

RAM.
qThis would be very fast, but the cost can be very high.
qDuring the course of the execution of a problem, 

memory references tend to cluster (e.g., loops).
qThus, we only need a small amount of fast memory 

between physical memory and CPU, or even on CPU 
or module.
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Cache Memory: 2/12
From memory to cache is
block based, more than a
byte/word.

From cache to CPU is
perhaps word/byte based.

cache may have multiple levels 
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Cache Memory: 3/12

Memory is organized in blocks.
Each block contains multiple words.

Cache memory has multiple lines,
each of which is the size of a block.
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Cache Memory: 4/12
qCache read Operation.

Issues in cache design:
1. Addressing
2. Size
3. Mapping
4. Replacement
5. Write policy
6. Block size
7. Number of caches
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Cache Memory: 5/12
qDirect mapping, associative mapping and set 

associative mapping.
qEach block of physical memory maps to only one 

cache line.
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Cache Memory: 6/12
qUse the tag field to compare whether a block is in 

cache.  If the block is in cache, we have a cache hit!
q If a miss, load the block to cache.  Only one choice!



78

Cache Memory: 7/12
qAssociative mapping: A physical memory block can 

be loaded into any line of cache.
qMemory address is interpreted as tab and word.
qTag uniquely identifies block of memory.
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Cache Memory: 8/12
qAssociative mapping: A physical memory block can 

be loaded into any line of cache.
qLRU is usually used to find a victim for the new 

block.
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Cache Memory: 9/12
qSet Associative mapping: Cache is divided into a 

number of sets, each of which contains a number of 
lines.
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Cache Memory: 10/12
qk-way Set Associative mapping:
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Cache Memory: 11/12
qk-way Set Associative mapping:
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Cache Memory: 12/12
qReplacement Algorithms:

ØDirect Mapping:  There is no choice.  
Because each block maps to one line, a miss 
always replace that line.

ØAssociative and Set Associative 
Mapping:  Random, FIFO, LRU (e.g., in a 2-
way set associative, it is easy to find the LRU), 
LFU (i.e., Least Frequently Used – replacing 
block which has had fewest hits).
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The End


