Virtual Memory Management

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

The danger of computers becoming like humans
is not as great as the danger of humans becoming like computers.

Spring 2019 Konrad Zuse

Definitions

JCache

» Copy of data that is faster to access than the original
» Hit: if cache has copy
» Miss: if cache does not have copy

JCache block

» Unit of cache storage (multiple memory locations)

 Temporal locality

» Programs tend to reference the same memory locations
multiple times

» Example: instructions in a loop
1 Spatial locality

» Programs tend to reference nearby locations
> Example: data in a loop

memory address

page numbers

Locality of Reference

| —

i ;
B [T 1 ||"mm| mlﬂ b i ooyt s

| ._.-J.'JIL

T, NH'Hs:ﬁ‘Iﬁ’w {t. "
T

| iy e d

l"l) tl.L [l U

I ’lrﬁ ‘v‘

mlll sl

;|

i

N\INM

I |||]" ||. I |

|_. , " 1] S
L —T
.'"" l »U ht.r
| B W

uuumuu HENY oo

psis) ..'..fl.
'l e

H !I

axecution tme ————»

Al i

'g!!ymun unu um'mnnm V I MWWW

I‘ m |m mie I

' TR LRPIARE M g i UL Loy

%H*'

Wil jl
a

, u|m|||

! v i hi |.I.1|WM|1!lm|';|||1m|'|" b

1 During any phase
of execution, the
process references
only a relatively
small fraction of

pages.

Main Points

J Can we provide the illusion of near infinite
memory in limited physical memory?

»Demand-paged virtual memory
» Memory-mapped files
JHow do we choose which page to replace?
» FIFO (First-In-First-Out), MIN (Optimal),

LRU (Least Recently Used), LFU (Least
Frequently Used), Second Chance, Clock

Observations

1 A complete program does not have to be in
memory, because

»error handling codes are not frequently used

> arrays, tables, large data structures usually
allocate memory more than necessary and
many parts are not used at the same time

»some options and cases may be used rarely

1 If they are not needed, why must they be in
memory?

Benefits

dProgram length is not restricted to real
memory size. That is, virtual address size can
be larger than physical memory size.

JCan run more programs because space
originally allocated for the un-loaded parts can
be used by other programs.

1 Save load/swap I/O time because we do not
have to load/swap a complete program.

Virtual Memory

 Virtual memory is the separation of user logical
memory from physical memory.

1 This permits to have extremely large virtual
memory, which makes programming large
systems easier.

1 Because memory segments can be shared, this
further improves performance and save time.

Virtual memory is commonly implemented
with demand paging, demand segmentation or
demand paging+segmentation.

virtual memory page table
: 0 :
: 0 1|V 7 o
P 1 2 [T
= 31§ el
- 2 a"\'
: 41v 1 \s
3 4L A
4 l :
i 5

: 6

process A

Demand Paging

present/absent bit

valid/invalid or

physical memory

© 00 NOoO O b WD -~ O

page frame table

proc A, pg 4

proc A, pg 1

Demand Paging (Before)

Page Table Physical Memory Disk
this page is not in physical memory Page Frames
Y
> Frame Access
3 Page A
. S S
Virtual Page.‘B. Frame for B Invalid . Page B
LT T T . TTLLLLL sent® ()
g .. > Page A

Virtual Page A | Frame for A R/W

: U If a process accesses a page that is not in physical memory,
a page fault (trap) is generated and trapped to the kernel. :
EI The kernel will find the needed page and load it into physical memory
EI The kernel also modifies the page table.

Demand Paging (After)

Page Table Physical Memory Disk
Page Frames
o -

Frame Access
page B becomes [valid R Page A
Virtual Page'B‘. Frame for B RW o /,x’/ Page B

ferrerrenneferrerrensenseererediernernenens > Page B P bring page B into physical memory,
ey LLLLLLLL ALl LLEPAN | replacing the original page A
Virtual PageA Frame for A| Invalid |
page A becomes invalid
:. ... R

: (0 The Kkernel finds the page in virtual memory, brings it into physical memory.
: O If there is no available page frame available, the kernel find an “occupied” one. :
EI Suppose page A was chosen. The kernel brings page B in to replace page A.

: : O The kernel update page table.

Address Translation

(J Address translation from a virfual address to a
physical address is the same as a paging system.

JHowever, there is an additional check. If the needed
page is not in physical memory (i.e., its valid bit is
not set), a page fault (i.e., a trap) occurs.

1 If a page fault occurs, we need to do the following:

»Find an unused page frame. If no such page
frame exists, a victim must be found and evicted.

» Write the old page out and load the new page in.
» Update both page tables.

» Resume the interrupted instruction.

11

Details of Handling a Page Fault

Trap to the OS // a context switch occurs
Make sure it is a page fault;
If the address is not a legal one then

address error, return
Find a page frame // page replacement algorithm
Write the victim page back to disk // page out (if modified)
Load the new page from disk // page in
Update both page tables // two pages are involved!
Resume the execution of the interrupted instruction

12

Hardware Support

1 Page Table Base Register, Page Table Length
Register, and a Page Table.

JEach entry of a page table must have a
valid/invalid bit. Valid means that that page is
in physical memory. The address translation
hardware must recognize this bit and generate
a page fault if the valid bit is not set.

1 Secondary Memory: use a disk.

1 Other hardware components may be needed
and will be discussed later.

13

Too Many Memory Accesses?!

1 Each address reference may use at least two
memory accesses, one for page table look up and
the other for accessing the page. It may be worse!
See below:

How many memory accesses are there?
A May be more than eight!

‘e
‘e
e
2

.
e
3
e
. S
. -
‘e
.
‘e
3
.

P,
L *
Yo, e
o e
‘e
.

Ly
lll

+ and operands can be rather long that
= could cross page boundary.

14

Performance Issue: 1/2

1 Let p be the probability of a page fault, the page
fault rate, 0 <p <1.

U The effective access time is
(1-p)*memory access time + p*page fault time

(1 The page fault rate p should be small, and
memory access time is usually between 10 and 200
nanoseconds.

1 To complete a page fault, three components are
important:

»Serve the page-fault trap
»Page-in and page-out, a bottleneck
» Resume the interrupted process

15

Performance Issue: 2/2

J Suppose memory access time is 100 nanoseconds,
paging requires 25 milliseconds (software and
hardware). Then, effective access time is

(1-p)*100 + p*(25 milliseconds)
= (1-p)*100 + p*25,000,000 nanoseconds
=100 + 24,999,900*p nanoseconds

L If page fault rate is 1/1000, the effective access time
is 25,099 nanoseconds = 25 microseconds. It is 250
times slower!

1 If we wish only 10% slower, effective access time is
no more than 110 and p=0.0000004.

16

Three Important Issues in V.M.

(1 Page tables can be very large. If an address has
32 bits and page size is 4K, then there are
232/212=220=(210)2= 1M entries in a page table per
process!

1 Virtual to physical address translation must be
fast. This is done with TLB. Remove any TLB

entries (i.e., copies of now invalid page table
entry).

dPage replacement. When a page fault occurs and
there is no free page frame, a victim page must
be found. If the victim is not selected properly,
system degradation may be high.

17

How Do We Know If Page Has
Been Modified?

1 Every page table entry has some bookkeeping
> Has page been modified?
v'Set by hardware on store instruction
v'In both TLB and page table entry
» Has page been recently used?
v'Set by hardware on in page table entry on every TLB
miss
1 Bookkeeping bits can be reset by the OS kernel
> When changes to page are flushed to disk
» To track whether page is recently used

18

Keeping Track of Page
Modifications (Before)

TLB Page Table Physical Memory Disk
oo "Frame Access Dirty** =, . Page Frames
.." : R/W No ".‘ There is a “dirty” bit indicating — >
g : H whether a page is modlﬁed
., e ! B A o1 0id Page A
ey, “a’ Frame Access Dlrty i
."-----......--l----..-l"“ Old PageB
\‘ Virtual Page B |Frame for B| Invalid < -
1 :
‘ EEn :
v e e, 3| Page A
\\ .¢‘P geesene .'o‘
N Virtual Page®A |Frame forA| R/W I Noi |
\\ "T.. . ug .‘?-
\IIIII ----:l"“‘ ‘\
N v, S
N N \
S N >
Sao N N
SO \ \\
~N~~ \\\ \.
‘Illl- ~~
: Some systems have a reference bit ‘“‘~.~~ \\ : page nOtmOdlﬁed
indicating whether a page has been ~"‘~~.~~:‘
:usedsinceitwasloadedintomemor 3 : :lllllllllllllllllllllllll lllllllllllllllllllllllllll:
: . . ! = = Both TLB and page table have the same entry, :
= Whenever a location in a page is used [} . :
E (e g load save, etc), the reference bit : EI EEEEER I:‘I’llllllcll} Isll}?l‘YIslfllllel Ia'IdI‘Id‘II:eISI§ Itl(: Ipl?lglel IAI: EEEEER I:
: is set. Of course, it is modified, the dlrty' 19
* and reference bits are all set. .

Keeping Track of Page
Modifications (After)

U I X - S Page Table Physical Memory Disk

“"“Fr'ame Access Dirty""~.,’ Page Frames
R/W Yes % - >
... E
* .
Y —.+*" Frame Access Dirty Old Page A
B LT T T L e : 0Old Page B
s
i Virtual Page B |Frame for B| Invalid e -
I :
: .
I ettty | 3 New Page A [Smmmman
] o ———— 1. ~
i RS : i H 3 PETTPEPTTTEIEPEER T PP PP
\ Virtual Page A, | Frame for A| ~ R/W tYes i [o* :This page has to be written
\ LT — .“fj ihack to disk if it is replaced:
\] . :By another page :
‘ S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESD
\\\ Y oy
S ‘\ \, JCLLCEELY .
Sseo \ : page modified:
~ v\ tsessssssszssssssssssssssssaasy

~--~
~~____- \

'lllllllllllllllllllrl?n'élllllllllllllllllllllllllll.

: Both TLB and page table have the same entry, :
: which shows the address to page A.

20

Modified/Dirty &
Referenced/Used Bits

(1 Most machines keep dirty/use bits in the page
table entry

1 Physical page is

»Modified if any page table entry that points to it
is modified (Modified/Dirty bit)

> Recently used if any page table entry that points
to it is recently used (Referenced/Used bit)

1 On MIPS, simpler to keep dirty/use bits in the
core map

» Core map: map of physical page frames

21

Page Replacement: 1/2

1 The following is a basic scheme
» Find the desired page on disk
»Find a free page frame in physical memory
»>if there is a free page frame, use it

»>if there is no free page frame, use a page-
replacement algorithm to find a victim page

»write this victim page back to disk and update
the page table and page frame table

»Read the desired page into the selected frame and
update page tables and page frame table

» Restart the interrupted instruction

22

Page Replacement: 2/2

1 If there is no free page frame, two page transfers (i.e.,
page-in and page-out) may be required.

1 A modified bit may be added to a page table entry. The
modified bit is set if that page has been modified (i.e.,
storing info into it). It is initialized to 0 when a page is
loaded into memory.

dThus, if a page is not modified (i.e., modified bit = 0), it
does not have to be written back to disk.

J Some systems may also have a referenced bit. When a
page is referenced (i.e., reading or writing), its

referenced bit is set. It is initialized to 0 when a page is
brought in.

1Both bits are set by hardware automaticglly.

Page Replacement Algorithms

1 We shall discuss the following page replacement
algorithms:

» First-In-First-Out - FIFO

» The Least Recently Used — LRU
» The Optimal Algorithm

»The Second Chance Algorithm
» The Clock Algorithm

(1 The fewer number of page faults an algorithm
generates, the better the algorithm performs.

1 Page replacement algorithms work on page
numbers. A string of page numbers is referred to

as a page reference string.
24

The FIFO Algorithm

 The FIFO algorithm always selects the “oldest”

page to be the victim. Columns organized by “age”.

o 1 2 3 0 1 4 0 1 2 3 4

3 frames

~

new

oldest

o 1 2 3 0 1 4 0 1

4 frames new

-
-
-

N =] O

3133

25

Belady Anomaly

 Intuitively, increasing the number of page frames
should reduce the number of page faults.

1 However, some page replacement algorithms do not
satisty this “intuition.” The FIFO algorithm is an
example.

1 Belady Anomaly: Page faults may increase as
the number of page frames increases.

JFIFO was used in DEC VAX-78xx series and NT
because it is easy to implement: append the new
page to the tail and select the head to be a victim!

26

The LRU Algorithm: 1/2

1 The LRU algorithm always selects the page that
has not been used for the longest period of time.

0 1 23@014(}01

3 frames 0o |0(3)3|3(4) 4
~ %1?172030
2

page fault=10 miss ratio=10/12=83.3% hit ratio = 16.7%
o 1 2 3 0 1 4 0 1 2 3 4

0ololo]olo]lo]lolo]o o@
4 frames
Y1 l1[1]1[1]171]1]1]1
2Y)2 | 2 2@4 4|4 3
3Y3 (3333 2 | 2

page fault=8 miss ratio=8/12=66.7% hit ratio = 33.3%

27

The LRU Algorithm: 2/2

(J The memory content of 3-frames is a subset of the memory
content of 4-frames. This is the inclusion property. With
this property, Belady anomaly never occurs. Why?

o 1 2 3 0 1 4 0 1 2 3 4
0 00 3|3 (3[4 |4|4)2

28

The Optimal Algorithm: 1/2

1 The optimal algorithm always selects the page that

will not be used for the longest period of time.
0 1 2 3.0 .1 40 1.2 3 4

3 frames {o%oooooo'oozzz

\ 1)1 |1 L4T1[1]1 11Q@ 3

@@3 3 @ 414|444

page fault=T miss ratio=7/12=58.3% hit ratio = 41.7%

01 2 3 0 1 40 1 2 3 4
|

ololo]olo]of0.l0 o@ 3
4 frames
N1 11171417111
2Y2 22721221222
3 3@4 44|44

page fault=6 miss ratio=6/12=50% hit ratio = 50% 20

The Optimal Algorithm: 2/2

1 The optimal algorithm always delivers the fewest
page faults, if it can be implemented. It also satisfies
the inclusion property (i.e., no Belady anomaly).

o 1 2 3 0 1 4 0 1 2 3 4
0/, 0|0 0|0O|(0|O0| 0|0 2

£ (N - O
£ (N - O

30

The Inclusion Property

1 Define the following notations:
»P=<p,, p,y ..., p, : a page trace
»m : the number of page frames

»M/(P, o, m) : the memory content after page p, is
referenced with respect to a page replacement
algorithm a..

- A page replacement algorithm satisfies the
inclusion property if M (P,o.,m) < M (P,o.,m+1)
holds for every .

JHomework: Inclusion property means no Belady

anomaly.

31

LRU Revisited

(1 Pages on each column are ordered from most

recently used to least recently used.
0 2 3 0 1 40 1 2 3 4

3 frames‘ Q‘“V ‘r "0 0" 4\ 0 1 9‘00 most recently used
~ 0(1/2[3]|0 1\“4{‘0 123

Pog—
0|1 21301 T.4 0|1 2 |least recently used
page fault=10 miss ratio=10/12=83.3% hit ratio = 16.7%

lll

P 7
1 G 6 a :most recently used

1123
0| 1|2

a
[|

4 framesi

4 o 1 |least recently used

page fault=8 miss ratio=8/12=66.7% hit ratio = 33.3%
Do the same for the optimal algorithm MIN

32

LRU Approximation Algorithms

JFIFO has Belady anomaly, the Optimal algorithm
requires the knowledge in the future, and the LRU
algorithm requires accurate info of the past.

(1 The optimal and LRU algorithms are difficult to
implement, especially the optimal algorithm. Thus,
LRU approximation algorithms are needed. We
will discuss three:

» The Second-Chance Algorithm
» The Clock Algorithm
»The Enhanced Second-Chance Algorithm

33

Second-Chance Algorithm: 1/3

1 The second chance algorithm is a FIFO algorithm.
It uses the referenced bit of each page.

1 The page frames are in page-in order (linked-list).
If a page frame is needed, check the oldest (head):
> If its referenced bit is 0, take this one

» Otherwise, clear the referenced bit, move it to
the tail, and (perhaps) set the current time. This
gives this page frame a second chance.

1 Repeat this procedure until a 0 referenced bit page
is found. Do page-out and page-in if necessary, and
move it to the tail.

JProblem: Page frames are moved too frequently.

34

Second-Chance Algorithm: 2/3

hew page = X rc = referenced and changed/modified bit pair
before [1 EE 1 4 76
:' 0C ‘: e e e
new time

referenced bit = () new paﬁ /

after 3 4 5l 78l
_."D —."A _."'F —.‘l-:g,",:::-:—p.o
A A nc - (00 ;
. reset rc bits
ge name fime
B 1

nc

Second-Chance Algorithm: 3/3

new page = X
before 1 3 4 6
131- D1 A.O F e
C C C nc

-3 —
\-u.,_\ \-\\

et _reset herbit new time

~- I - A
A 4 F 6 . '3; 8]

e : e

r:eferenced bit =1

after 6 8
—p-F —p-B ———
e Oc

reset rc bits

The Clock Algorithm: 1/2

1 1If the second chance algorithm is implemented
with a circular list, we have the clock algorithm.

A “next” pointer is needed.

(1When a page frame is needed, we examine the
page under the “next” pointer:

»If its referenced bit is 0, take it

**Otherwise, clear the reference bit and advance
the “next” pointer.

1 Repeat this until a 0 reference bit frame is found.

Do page-in and page-out, if necessary
37

The Clock Algorithm: 2/2

new page = X

A

lc

next

Oc

lc

reset rc bits

reset r bit

Enhanced Second-Chance
Algorithm: 1/5

d Four page lists based on their reference-modify
bits (r,c) are used:

Q00 - pages were not recently referenced and
not modified, the best candidates!

Q01 - pages were changed but not recently
referenced. Need a page-out.

Q10 - pages were recently used but clean.

Q11 - pages were recently used and modified.
Need a page-out.

39

Enhanced Second-Chance
Algorithm: 2/5

1 We still need a “next” pointer.
1When a page frame is needed:

“*Does the “next” frame has 00 combination? If
yes, victim is found. Otherwise, reset the
referenced bit and move this page to the
corresponding list (i.e., Q10 or Q11).

“*If Q00 becomes empty, check Q01. If there is a
frame with 01 combination, it is the victim.
Otherwise, reset the referenced bit and move the
frame to the corresponding list (i.e., Q10 or Q11).

“*If Q01 becomes empty, move Q10 to Q00 and
Q11 to QO01. Restart the scanning process.

40

Enhanced Second-Chance

Q00 Q01 Q10
1 11 5 10 8 11
2 10 6 11 9 11
3 11 7 10
4 11

Q00 Q01 Q10
— 5 10 8 11
6 1| _la. .1
7 10| i |2 00

Algorithm: 3/5

011
10 11
11 1
12 11
011
10 11
11 1
A2.....114
|1 o1
{3 o1
(4 o1

41

Enhanced Second-Chance

Algorithm: 4/5

Q00 Q01 010
— 5 10 8 11
6 11 9 11
7 10 2 00
Q00 Q01 010
8 11
9 11
12......00]|.
|5 00
|7 00

Q11
10 11
11 11
12 11
1 01
3 o
4 01

011

10 11
11 11
12 11
1 01
3 o

..... 4...01|
6 o

42

Q00 001
8 11 10 11
9 11 11 11
2 00 12 11
5 00 1 01
7 00 3 01
4. 01
6 01

000 001
2 00 10 11
5 00 11 11
7 00 12 11
1 01
3 01
4. 01
6 01

: This algorithm was used:
:in IBM DOS/VS and

43

Other Important Issues

[Global vs. Local Allocation

d Locality of Reference

d Thrashing

1 The Working Set Model

(1 The Working Set Clock Algorithm

1 Page-Fault Frequency Replacement Algorithm

44

Global vs. Local Replacement

d Global replacement allows a process to select a
victim from the set of all page frames, even if the
page frame is currently allocated to another process.

JLocal replacement requires that each process
selects a victim from its own set of allocated frames.

1 With a global replacement, the number of frames
allocated to a process may change over time, and, as
a result, paging behavior of a process is affected by
other processes and may be unpredictable.

45

Global vs. Local: A Comparison

1 With a global replacement algorithm, a process cannot
control its own page fault rate, because the behavior of
a process depends on the behavior of other processes.
The same process running on a different system may
have a totally different behavior.

1 With a local replacement algorithm, the set of pages of
a process in memory is affected by the paging behavior
of that process only. A process does not have the
opportunity of using other less used frames.
Performance may be lower.

1 With a global strategy, throughput is usually higher,

and is commonly used.
46

memory address

page numbers

Locality of Reference

| —

i ;
B [T 1 ||"mm| mlﬂ b i ooyt s

| ._.-J.'JIL

T, NH'Hs:ﬁ‘Iﬁ’w {t. "
T

| iy e d

l"l) tl.L [l U

I ’lrﬁ ‘v‘

mlll sl

;|

i

N\INM

I |||]" ||. I |

|_. , " 1] S
L —T
.'"" l »U ht.r
| B W

uuumuu HENY oo

psis) ..'..fl.
'l e

H !I

axecution tme ————»

Al i

' TR LRPIARE M g i UL Loy

%H*'

'g!!ymun unu um'mnnm V I MWWW

I‘ m |m mie I

Wil jl
a

, u|m|||

! v i hi |.I.1|WM|1!lm|';|||1m|'|" b

1 During any phase
of execution, the
process references
only a relatively
small fraction of

pages.

47

Thrashing

dThrashing means a process spends more time
paging than executing (i.e., low CPU utilization
and high paging rate).

A If CPU utilization is too low, the medium-term
scheduler is invoked to swap in one or more
swapped-out processes or bring in one or more
new jobs. The number of processes in memory
is referred to as the degree of
multiprogramming.

48

Degree of Multiprogramming:
1/3

1 We cannot increase the degree of multiprogramming
arbitrarily as throughput will drop at certain point
and thrashing occurs.

J Therefore, the medium-term scheduler must
maintain the optimal degree of multiprogramming.

‘ throughput

l"_opt.v'nwwl region.# thrashing -

degree of multiprogramming

Degree of Multiprogramming:
2/3

1. Suppose we use a global strategy and the CPU
utilization is low. The medium-term scheduler
will add a new process.

2. Suppose this new process requires more pages. It
starts to have more page faults, and page frames
of other processes will be taken by this process.

3. Other processes also need these page frames.
Thus, they start to have more page faults.

4. Because pages must be paged- in and out, these
processes must wait, and the number of processes
in the ready queue drops. CPU utilization is
lower.

50

Degree of Multiprogramming:
3/3

5. Consequently, the medium-term scheduler brings
in more processes into memory. These new
processes also need page frames to run, causing
more page faults.

6. Thus, CPU utilization drops further, causing the
medium-term scheduler to bring in even more
processes.

7. If this continues, the page fault rate increases
dramatically, and the effective memory access
time increases. Eventually, the system is
paralyzed because the processes are spending

almost all time to do paging!
51

The Working Set Model: 1/4

(1 The working set of a process at virtual time ¢,
written as W(t,0), is the set of pages that were
referenced in the interval (z- 6, f], where @is the
window size. These are “most recently used”
pages, which can be ordered in the LRU way.

1 &= 3. The result is identical to that of LRU:

page fault=10 miss ratio=10/12=83.3% hit ratio = 16.7%

52

The Working Set Model: 2/4

JHowever, the result of 8= 4 is different from that of

LRU.
0 1 2 3 0 [1_40071h2: 3 4
— =T
o[oJo[o]ofoo]0]o]o[4]
Y EREREREREHEREIERERE
2) 22 24 4 543
5153 | ()22
page fault=8 miss ratio=8/ 12=6:7'7”o""lift ratio = 33.3%

only three pages here

53

The Working Set Model: 3/4

(JThe Working Set Policy: Find a good 6, and keep
W(t,6) in memory for every .

(1 What is the best value of 7 This is a system tuning
issue. This value can change as needed from time to
time.

A

optimal 0O

Page Fault Rate

Window Size O >4

The Working Set Model: 4/4

 Unfortunately, like LRU, the working set policy
cannot be implemented directly, and an
approximation is necessary.

1 But, the working set model does satisfy the
inclusion property.

1A commonly used algorithm is the Working Set
Clock algorithm, WSClock. This is a good and

efficient approximation.

55

ages may come back
Ifth

page fault ey are used again
- Advace CLOCK
pointer B — f
Pl N
' g
Vi \
/ X
not set| Referenced |[set l, Prepare for | 1
Bit? 1 | Page Cleaning | ;
A !
\ i /
\\ //
Store Virtual T

Y

Time to Frame

i The to-be-cleaned pages

Now-Then >0 Ino -

?

are just in a list. If before :
i a page is written back to VS

¢

yes

Process Active

: it is used again, it will be
: brought back to WS.

yes :

?

no

Modified Bit?

set

*not set

The WSClock Algorithm

Victim Found

56

Example VMOS: 1/2

dVMOS (Virtual Memory Operating System)
was an early OS (1970s) using working set.”

 This OS is designed for UNIVAC Spectra 70,
similar to IBM System/370.

d Time for adjusting working set:
1. Page fault

2. A process finishes executing 4000 instruction.
This time is the window size 6.

3. For a process waiting for 1/O, unless its
working set has been adjusted within 6 time,
its working set has to be adjusted.

57

Example VMOS: 2/2

OF = last reset time : Starting from { max = 12000 instructions ;
i ¢ = current time 1 page 5 min = 3000 instructions
> 1,0 = 4000 instructions :
‘} llllllllllllllllllllllllllllllllll .
any uncm\no — STOP

‘-IIIIIIIIIIIIIIIIIIIIIIIIIII-.‘

! max > X > min: .
page not used, but not long enough'
find the largest X is the LRU page' =

.IIIIIIIIIIIIIKIIIIIIIIIIIIIII‘

so not referenced:

. X=t- X = the gap between last and this
reset time

referenced page: reset R-bit giving 2" chance
OF = interrupted time (starting time)

sEEER

: RO: only referenced
RW modified

yes
has not been used for long

enough, ready to be removed
no

page not used; Largest X? l\lﬁzg{;:mslzn Reset R-bit
but not long enough es, mark this pag y W OF=¢

(max > X > min) ove to RO or R

y 3
58

Virtual Relocation
Virtual Memory in a VM: 1/4

VM1’s VS

! RM: real machine
» VM: virtual machine s
VM1

* VS: virtual memory :

4pEEEEEEEEEEEEEEEEEERS

What is the VM supports
virtual memory?

v A page-in in a VM brings
its page into its VS; but,

Actually the page should

~~~~~ . page-il.l in VM must have be brought to RM
I its page in RM to be used!

VM2’s VS
\ VM 2 l} O
]

’——————————\
) JU R ——




Virtual Relocation
Virtual Memory in a VM: 2/4

SGT PGT FMT R’M
3
|
SGT PGT  FMT RM
3 -~
olo]

SGT: Segment Table, PGT: Page Table, FMT: Page Frame Table

SGT. PGT FMT
=
[T —
\\\
N Sso
\ o
N\
7
- ~~~
Tem——— P -

-

i —————— T ——

VM’s VS :

‘

:|needed page from VM’s VS into VM.

But, because this page has to be in RM
:| to be used, the RM allocates a page
:| Frame for this page and modifies RM’ s

“From RM’s point of view, VM
is just something in RM’s VS.

RM has its segment table SGT,
page table (PGT) and page
frame table FMT for its own

. Vlrtual memory management. R

'--------..-‘

Now, VM uses page 8 of segment 2.
ecause this page is not in memory,
It has to be paged-in to the shaded frame

1

The VM starts page-in, moving the

..-- ssssmmssmmnunn®

page table.

60

Yo

-
[
[
[
[
[
l
-



Virtual Relocation
Virtual Memory in a VM: 3/4

——F— ] criReal Control Register —F— ] vcr1 Virtual Control Register
Points to segment table Points to VM’s segment table
RM
VM
SGT PGT FMT

2
s

3 —— _1; SGT PGT FMT VMIS VS
of In] J .

+"When a VM executes on a RM, which segment table ",

y \_/ and page tables should be used?
: s[ T ] i

The RM tables cannot be the candidate
because they are used to manage the VM.

L o

Shadow tables that describes
The VM’s memory usages

Tables in VM cannot be used either because that VM
SGT: Segment Table : runs on RM rather than a VM. :

PGT: Page Table E i
+ In fact, the RM builds a set of shadow tables

FMT: Page Frame Table ,for each VM. 61



Virtual Relocation
Virtual Memory in a VM: 4/4

—F— ] cr1 Real Control Register —FE—="] vert ::“:t“al COlltI;Ol Reglste;r .
Points to segment table oints to VM's segment table
RM
SGT PGT FMT

— VM’s VS

-t

e
' ’\\\\ o //// \___/
H = *points to the virtual
- o . .
P e (T g\\ \_// page in virtual storage

l', E f \\\ LA AR R RRRRRRRRRRRRRERERRERRNRRRERERERRERERRRERNERERRERERNERRERRERRRRERRERNERNRNNDN:!
...... '.........................................: ‘-‘ E The control program running on RM builds a set of shadow pages E
;[l‘lhlf‘ Sft oftsha’(’lowttlilbles hztll‘lle VM P = Tables that are identical to those in the VM. .
: the “structure” as those in the S . »
£ . . s 1 - .
b ut, t heypomt tOREAL thmgs ..... ; E = But, the page frame numbers are different. The page table in VM :
points to the real = points to the page frame in VM, but the shadow page table in RM

= points to the real page frame. 62 =

page in memory



Virtual Memory Management in
Control Program (CP): 1/5

1 The control program CP of VM/370 views each
virtual machine as a process.

1 CP uses a second chance page replacement and
working set.

] All page frames are in two lists and

- has all free page frames.

] If for some reason a VM cannot hold its page frames,
all of its page frames are moved to

However, page tables are not modified, only showing
these pages are not available to use.

63



Virtual Memory Management in
Control Program (CP): 2/5

1 If the RM needs a page frame, then ...
» Take one from

» Or, if has no page frame available,
then take one from

» Or, if is also empty, then search the
used page frame with the clock algorithm.

» Note that page table entry has to be modified and
page-out may be needed.

64



Virtual Memory Management in
Control Program (CP): 3/5

(1 A VM May or may not be allowed to get page frames.

(1 When a VM is allowed to get pages, the memory
management MM component in RM monitors paging
activity of this VM.

(1 Once this VM causes a page fault, MM monitors the
number of in memory page of this VM, until this VM
becomes not allowed to get page frames.

] At this moment, RM calculates the Average
Resident Pages (ARP) of this VM.

] Note that among these page faults, some causes
removing of its own page, while the others steal other
VM’s pages.

65



Virtual Memory Management in
Control Program (CP): 4/5

(1 The MM in CP determines the rate of page faults of
this VM that requires stealing other VM’s pages.

1 If this rate is larger than 8%, this rate is recorded in
S. Otherwise, S = 0.

] During this period (i.e., the time a VM allowed to get
pages), let P be the average life span: time span in
this period divided by the number of page faults.

1 Let I be the global average life span: total CPU time
so far divided by the number of page faults.

66



Virtual Memory Management in
Control Program (CP): 5/5

(1 The MM component of CP uses the following to
predict the average resident page in the next period:

Il
newARP = max ((ARP‘F S) \/%,5)

[ This prediction is usually close to the actual working
set size except for some odd situations. Note that the
newARP has at least 5 pages.

U If system performance goes down because of this
VM’s high page faults (/ > P and/or S > 0), the new
prediction is larger.

 Otherwise, I may be less than P, and hence the new
prediction of ARP may be smaller.

67



Cache Concept (Read)

Cache
Fetch Fetch
Address Address In Address
....................................... > Cache? NocaChemiss)
Yes
: cache hit
Store Value

in Cache

L Memory read requests are sent to the cache :
: U The cache either returns the value stored at that memory location, :
: or it forwards the request onward to the next level cache - 08



Memory Hierarchy

Cache Hit Cost Size
1st level cache/first level TLB 1ns 64 KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100us 100GB
Local disk 10ms 1TB
Data center disk i0ms 100PB
Remote data center disk 200 ms 1XB

i7 has SMB as shared 3'4 level cache; 2"d level cache is per-core

69



Cache Concept (Write)

Cache
Store Value Store Value Fetch
at Address at Address Address In Address
.................................. > PPN A ND cceosseecsescssessscnssessassend
Cache?
WriteBuffer
Yes
Cache write through: Store Value
Data is written to the cache and memory~,_  in Cache
S Store Value
Sa o at Address
|f Write Through .................................. >

0 Memory requests are buffered and then sent to the cache in the background :
: (1 Typically, the cache stores a block of data, so each write ensures that the :
i rest of the block is in the cache before updating the cache
Q) If the cache is write through, the data is then sent onward to the next level

of cache or memory.



Memory Hierarchy

1 Cache memory can be between CPU and memory,
external device and memory, etc.

More Costly

Access
Times

Less Costly

71



Cache Memory: 1/12

1 It is possible to build a computer using only static
RAM.

] This would be very fast, but the cost can be very high.

L During the course of the execution of a problem,
memory references tend to cluster (e.g., loops).

(] Thus, we only need a small amount of fast memory
between physical memory and CPU, or even on CPU
or module.

72



Cache Memory: 2/12

Block Transfer ,.uesssssrsassnneann,,,,

WOI’dTI'anSfeI' "“ ....'..llllllllllllllllllllllllllllllll
~A— M/\ : From memory to cache is

s = block based, more than a
CPU Cache Main Memory : byte/word.

: From cache to CPU is
. FR P : perhaps word/byte based.

Level 1 Level 2 Level 3 Main

CPU

(L1) cache (L2) cache (L3) cache Memory
Fast Fast .
as eEt * Less Shw
[ fast H
IIIIIIIIIIIIIIIIIIIIIllllllllllllllkilllll'
(b) Three-level cache organization "."

.lllllllllllllllllll“.llllllllllllllllllll-

Ecache may have multiple levels: 73



Cache Memory: 3/12

Line Memory
Number Tag BIOCk addr§§lllllllllllllllll.
0 : :
1 : :
2 . : Block
° E E (K words)
. : :
. ;IIIWIIIIIIIIIIIIIIII:
i
c-1 I'
Block Length 7
x (K Words) ,/I °
\
\ U4
(a)ache ,/' ¢
A -7 °
S -
S -
\\\~ —————”
'lllllllllllllllllllllll_ll-llllllllllllllllll: ---------
:  Memory is organized in blocks. :
: Each block contains multiple words. :
: Cache memory has multiple lines, : Block
= each of which is the size of a block. :
2" -1
Word
Length

(b) Main memory



Cache Memory: 4/12

1 Cache read Operation.

Receive address
RA from CPU

"Issues in cache design: ‘
1. Addressing
2. Size

Mapping

Is block
containing RA
in cache?

No Access main
memory for block
containing RA

Fetch RA word Allocate cache
Replacement and deliver line for main
to CPU memory block

3.

4.

S. Write policy

6. Block size

7. Number of caches

@ *
A EEEEEEEEEEEEEEEEEEEEEEERS

“IIIIIIIIIIIIIIIIIIIIII...

*
.
-
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
[ ]
L
¥

L4

"

Load main
memory block
into cache line

A
‘ DONE . y

Deliver RA word
to CPU

75



Cache Memory: 5/12

] Direct mapping, associative mapping and set
associative mapping.

1 Each block of physical memory maps to only one
cache line.

E b i i t > < b i

Bo > L A
>

o ° ° ° "

o o o ° ¥

o ° ° -

=
>
>

Bm—1 > Lm_1 v

First m blocks of
main memory
(equal to size of cache) b =length of block in bits
t=length of tag in bits 76

cache memory

(a) Direct mapping



Cache Memory: 6/12

] Use the tag field to compare whether a block is in
cache. If the block is in cache, we have a cache hit!

1 If a miss, load the block to cache. Only one choice!

S+W
7
(\_ﬁ?/-——\ CaChe
Memory Address Tag Data
| Tag [ word | [
L
s 0
w | e |
1 ¢ |
l ]
l
w L
Compare I ® I
1 |
|__(hiti o
B (hit in cache)
0 if no match |
Sy | L
7 m-1
0 if match
| 1ifnomatch s in cache)

Main Memory

WO
Wi
w2 Bo
w3

Waj
Wap+1)
W(a+2) B
W(4/+3)

o |
e 1
°*
-= " 77



Cache Memory: 7/12

] Associative mapping: A physical memory block can
be loaded into any line of cache.

1 Memory address is interpreted as tab and word.
] Tag uniquely identifies block of memory.

L 2>

one block of
main memory

cache memory 78



Cache Memory: 8/12

] Associative mapping: A physical memory block can
be loaded into any line of cache.

J LRU is usually used to find a victim for the new
block.

f\ﬂa—/—\ Cache Main Memory
Memory Address Tag Data WO
Bo

| Tag | word | [ W1
L W2
s 0 W3
L ]
L ]
|
X > > L s
X <[ wa

[ ]
B
o 7 J

| | W W(4j+1)

Compare V/ > Wa2)

I | W(@/+3)

| b °
1 if match (hitin cache) [ I
0if no match 1 |
s, | ° I
L
7 m-1 I [ ] l
l o - o
0 if match 79
| 1ifnomatch  ics in cache)




Cache Memory: 9/12

] Set Associative mapping: Cache is divided into a
number of sets, each of which contains a number of

lines.

klines

Ly

cache memory -set 0

First v blocks of
main memory
(equal to number of sets)

cache memory - set v—1

(a) v associative-mapped caches

80



Cache Memory: 10/12

 k-way Set Associative mapping:

YYYYY

_______________ _.0nhe
________________ _l} Set

yl

L R J
B Ly
First v blocks of cache memory - way 1 cache memory - way k

main memory
(equal to number of sets)

-1

(b) k direct-mapped caches

81

y N

v lines



Cache Memory: 11/12

] k-way Set Associative mapping:

S+wW/
7
f\sz/\ Cache Main Memory
Memory Address Tag Data B
0
T Set Word
[Tag] e | word | | .
1
s—d d
ds Ly wy L -
® Set0 I I
| o | |
| e | | |
s-d, ] Fr-1 | |
7 1
r L Fy S+wW
LN ] . BJ
Y o |
Compare ) Fsi Set 1 | o |
f ° | e |
| | ° I e
(hitin cache) L Fak-1 |
1 if match P — I
0 if no match
| |
0 if match l_ — l
1 if no match .
(miss in cache)




Cache Memory: 12/12

(1 Replacement Algorithms:

»Direct Mapping: There is no choice.
Because each block maps to one line, a miss

always replace that line.

»Associative and Set Associative
Mapping: Random, FIFO, LRU (e.g., in a 2-
way set associative, it is easy to find the LRU),
LFU (i.e., Least Frequently Used — replacing
block which has had fewest hits).

83



The End



