Storage System

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

If you can’t give me poetry,
Can’t you give me poetical science?

Sp l’illg 2019 Ada Lovelace

Applications
Logical File Sys
File Organization

Physical File Sys
17O Control

executes input/output statements

uses the directory structure to
provide the file organization
module with all infomation

handles the files and their logical
blocks and physical blocks

issues /O commands to the
device drivers to read/write
physical blocks on the disk

device drivers and interrupt
handlers

actual I/O operations

Layered
File System

Overview: 1/4

] A file system has on-disk and in-memory
information.

A disk may contain the following for
implementing a file system on it:

“* A boot control block per volume
“* A volume control block per volume

“* A directory structure per file system
* A file control block (FCB) per file

JIn-memory information include

“*An in-memory mounted table has info for each
mounted volume

“* An in-memory directory structure
“*The system-wide open-file table
“*The per-process open-file table

“* Buffers hold file-system blocks

Overview: 2/4

a typical file control block FCB JA FCB, ﬁle control

block, contains the
Al pe kel details of a file.

file date JIn Unix, a FCB is

file owner, group, ACL called an i-node.

file size

file data blocks

Overview: 3/4

4: update FCB and directory

user program

kernel memory

1: create a new file

directory structure

3: read the directory
. disk memory

directory structure

9: a file descriptor/file handle

Is returned

FCB

2: allocate a new FCB >

Overview: 4/4

index
kernel memory disk memory
user prograim per-process
open-file table .

0' -
*

*

*

*
*

Data blocks

: . system-wide
3 open-file table

*
*
*
[
<
*
*
*
*
*
*
*
[
»

FCB

Directory Implementation

[A File directory is usually implemented as a
linked-list, a tree (e.g., B-tree), a hash table
with chaining, or the combination of both.

1 The problem with the linked-list approach is its
poor performance in searching for a file.
Directory search is performed very frequently.

(1 The hash table approach speeds up search;
however, we must deal with the problem of
collisions. Thus, chaining is necessary.

Directory Entries: 1/2

A directory is just a file!

A directory entry may be very simple like the
one used by MS-DOS. Or, it may be quite
complex like the Unix i-node.

Bytes 8 3 4 2 2 4 2 4
_ N Creation | Last Last write :
St A T date/time |access date/time s
Atbutas Sec Upper 16 bits Lower 16 bits
of starting of starting
block block

extended MS-DOS directory entry used in Windows 98

Directory Entries: 2/2

Bytes s
File name
$
Unix directory entry
|-node
number
Block 132
I-node 6 is /usr
Root directory is for /usr directory
1 2 mode 6] ¢
1 oo size 1| ee
4 | bin Himes 19 | dick
7 | dev 132 30| erik/
14 lib 51 i
9 et q 26 ast
6 usr 45 bal
8 tm
: P I-node 6
Looking up says that /usr/ast
usr yields /usr is in is i-node
i-node 6 block 132 26

block 406

I-node 26 Block 406
is for is /usr/ast
/usr/ast directory
mode / 26| °
size : 6| oo
times 64 | grants
406 ‘ 92 | books
60 | mbox
81 | minix
17 | src
I-node 26
says that /usr/ast/mbox
/usr/ast is in is i-node

60

File Allocation Methods

1 There are three typical file space allocation
methods:

» Contiguous Allocation
> Linked Allocation
> Indexed Allocation

10

Contiguous Allocation: 1/3

1 With the contiguous allocation method, a user
must indicate the file size before creating a file.

1 Then, the operating system searches the disk to
find contiguous disk blocks for the file.

U The directory entry is easy. It contains the initial
disk address of this file and the number of disk
blocks.

(d Therefore, if the initial address is b and the

number of blocks is n, the file will occupy blocks b,
b+1, b+2, ..., b+n-1.

11

Contiguous Allocation: 2/3

directory
File Name Start Block Length
File A 2 3
File B 9 5
File C 18 8
File D 30 2
File E 26 3

Since blocks are allocated
contiguously, external
fragmentation may occur.

Thus, compaction may be
needed.

Contiguous Allocation: 3/3

1 Contiguous allocation is easy to implement.
1Its disadvantages are

» 1t can be considered as a form of dynamic
memory allocation, and external fragmentation

may occur and compaction may be needed.

> 1t is difficult to estimate the file size. The size of
a file may grow at run time and may be larger
than the specified number of allocated blocks.
In this case, the OS must move the blocks in
order to provide more space. In some systems,

this is simply an error.
13

Linked Allocation: 1/3

1 With the linked allocation approach, disk

blocks of a file are chained together with a
linked-list.

1 The directory entry of a file contains a pointer
to the first block and a pointer to the last block.

To create a file, we create a new directory entry
and the pointers are initialized to nil.

1'When a write occurs, a new disk block is
allocated and appended to the end of the list.

14

30

Linked Allocation: 2/3

31

32

directory
File Name Start End

1 File blocks are chalned into a
linked-list.

(1 The directory entry has pointers
to the first and last file blocks.

J Append is difficult to do without
the End pointer.

15

Linked Allocation: 3/3

JAdvantages:
» File size does not have to be specified.
»No external fragmentation.
dDisadvantages:

» It supports sequential access efficiently, and is
not for direct access

»Each block contains a pointer, wasting space

» Blocks scatter everywhere and a large number
of disk seeks may be necessary

> Reliability: what if a pointer is lost or damaged?

16

File Allocation Table (FAT)
FAT

0 This is a variation of the
linked allocation by
pulling all pointers into a

217 618 table, the file allocation
directory table (FAT).

test The left diagram shows

— file has its first block
39| end-of-file at 217, followed by 618,
339 (end of file).

217

618 339 ' U Large no. of disk seeks.
[Can do direct access.
[FAT needs space.

no. of blocks-1 J What if FAT is damaged?
We all know it well!

17

Indexed Allocation: 1/4

d Each file has an index block that is an array of
disk block addresses.

(1 The i-th entry in the index block points to the i-th
block of the file.

A file’s directory entry contains a pointer to its
index. Hence, the index block of an indexed
allocation plays the same role as a page table does.

dIndex allocation supports both sequential and
direct access without external fragmentation.

18

Indexed Allocation: 2/4

30 31

32

33

directory
File Name Index Block
File B 24

LN ® -

index block

19

Indexed Allocation: 3/4

1 The indexed allocation suffers from wasted space.
The index block may not be fully used (i.e., internal
fragmentation).

(1 The number of entries of an index table determines
the size of a file. To overcome this problem, we may

»Have multiple index blocks and chain them into a
linked-list

»Have multiple index blocks, but make them a
tree just like the indexed access method

> A combination of both

20

Indexed Allocation: 4/4

[-node ,
: Single
Attributes indirect Double
ik A block indirect block
-)
- if:‘ / TN Addresses of
. 8 - 3> Triple indirect data blocks
X g . =]: E d block
2 59s 5t 1 »
3 |= - i o
. o
L Q
k.lllll’illlllll —]
‘
47
3 3 - = B
256 entries per index table.
What is the maximum size of a file? | e gl
3o

21

Free Space Management

JHow do we keep track free blocks on a disk?

A free-list is maintained. When a new block is
requested, we search this list to find one.

1 The following are commonly used techniques:
» Bit Vector
» Linked List
»Linked List + Grouping
» Linked List+Addresst+Count

22

Bit Vector

(JEach block is represented by a bit in a table. If there
are n disk blocks, the table has »n bits.

1 If a block is free, its corresponding bit is 1.

dWhen a block is needed, the table is searched. If a 1
bit is found in position k, block £ is free.

1 1If the disk capacity is small, the whole bit vector can
be stored in memory. For a large disk, this bit
vector will consume too much memory.

1 We could group a few blocks into a cluster and
allocate clusters. This saves space and may cause
internal fragmentation.

23

Linked List

(J Like the linked allocation method, free blocks can
be chained into a linked list.

(dWhen a free block is needed, the first in the chain is
allocated.

1 However, this method has the same disadvantages
of the linked allocation method.

1 We may use a FAT for the disk and chain the free
block pointers together. Note that the FAT may be
very large and consume space if it is stored in
memory.

24

Grouping
(1 The first free block contains the addresses of n

other free blocks.

dFor each group, the first n-1 blocks are actually
free and the last (i.e., n-th) block contains the
addresses of the next group.

1 1In this way, we can quickly locate free blocks.

3| 8|50 3 T
(3 & 8 are free) P
8
12
%
20 «
(6 & 12 are free) 6 12| 20
25

Address + Counting

(1 The list can be made short with the following trick:
> Blocks are often allocated and freed in groups

> We may store the address of the first free block
and the number of the following n free blocks.

free block list

disk 2%

The End

