
1

Storage System

Spring 2019

If you can’t give me poetry,
Can’t you give me poetical science?

Ada Lovelace

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

2

Layered
File System

3

Overview: 1/4
qA file system has on-disk and in-memory

information.
qA disk may contain the following for

implementing a file system on it:
vA boot control block per volume
vA volume control block per volume
vA directory structure per file system
vA file control block (FCB) per file

qIn-memory information include
vAn in-memory mounted table has info for each

mounted volume
vAn in-memory directory structure
vThe system-wide open-file table
vThe per-process open-file table
vBuffers hold file-system blocks

4

Overview: 2/4
qA FCB, file control
block, contains the
details of a file.

qIn Unix, a FCB is
called an i-node.

file permission

file date

file owner, group, ACL

file size

file data blocks

a typical file control block FCB

5

Overview: 3/4

open(filename) directory structure

FCB

user program
kernel memory disk memory

directory structure

1: create a new file

2: allocate a new FCB

3: read the directory4: update FCB and directory

5: a file descriptor/file handle
is returned

6

Overview: 4/4

read(index)

Data blocks

FCB

user program
kernel memory disk memory

per-process
open-file table

system-wide
open-file table

index

7

Directory Implementation
qA File directory is usually implemented as a

linked-list, a tree (e.g., B-tree), a hash table
with chaining, or the combination of both.

qThe problem with the linked-list approach is its
poor performance in searching for a file.
Directory search is performed very frequently.

qThe hash table approach speeds up search;
however, we must deal with the problem of
collisions. Thus, chaining is necessary.

8

Directory Entries: 1/2
qA directory is just a file!
qA directory entry may be very simple like the

one used by MS-DOS. Or, it may be quite
complex like the Unix i-node.

extended MS-DOS directory entry used in Windows 98

9

Directory Entries: 2/2

Unix directory entry
find /usr/ast/mbox

10

File Allocation Methods

qThere are three typical file space allocation
methods:
ØContiguous Allocation
ØLinked Allocation
ØIndexed Allocation

11

Contiguous Allocation: 1/3

qWith the contiguous allocation method, a user
must indicate the file size before creating a file.

qThen, the operating system searches the disk to
find contiguous disk blocks for the file.

qThe directory entry is easy. It contains the initial
disk address of this file and the number of disk
blocks.

qTherefore, if the initial address is b and the
number of blocks is n, the file will occupy blocks b,
b+1, b+2, …, b+n-1.

12

Contiguous Allocation: 2/3

Since blocks are allocated
contiguously, external
fragmentation may occur.
Thus, compaction may be
needed.

directory

13

Contiguous Allocation: 3/3
qContiguous allocation is easy to implement.
qIts disadvantages are

ØIt can be considered as a form of dynamic
memory allocation, and external fragmentation
may occur and compaction may be needed.

ØIt is difficult to estimate the file size. The size of
a file may grow at run time and may be larger
than the specified number of allocated blocks.
In this case, the OS must move the blocks in
order to provide more space. In some systems,
this is simply an error.

14

Linked Allocation: 1/3
qWith the linked allocation approach, disk

blocks of a file are chained together with a
linked-list.

qThe directory entry of a file contains a pointer
to the first block and a pointer to the last block.

qTo create a file, we create a new directory entry
and the pointers are initialized to nil.

qWhen a write occurs, a new disk block is
allocated and appended to the end of the list.

15

Linked Allocation: 2/3

qFile blocks are chained into a
linked-list.

qThe directory entry has pointers
to the first and last file blocks.

qAppend is difficult to do without
the End pointer.

28 Last Block

directory
File Name Start End

………… …….. ……..

………… …….. ……..B 1 28

16

Linked Allocation: 3/3
qAdvantages:

ØFile size does not have to be specified.
ØNo external fragmentation.

qDisadvantages:
ØIt supports sequential access efficiently, and is

not for direct access
ØEach block contains a pointer, wasting space
ØBlocks scatter everywhere and a large number

of disk seeks may be necessary
ØReliability: what if a pointer is lost or damaged?

17

File Allocation Table (FAT)
q This is a variation of the

linked allocation by
pulling all pointers into a
table, the file allocation
table (FAT).

q The left diagram shows
file test has its first block
at 217, followed by 618,
339 (end of file).

q Large no. of disk seeks.
q Can do direct access.
q FAT needs space.
q What if FAT is damaged?

We all know it well!

0

217

339

339618

no. of blocks-1

618

end-of-file

test

217

FAT

directory

18

Indexed Allocation: 1/4
qEach file has an index block that is an array of

disk block addresses.
qThe i-th entry in the index block points to the i-th

block of the file.
qA file’s directory entry contains a pointer to its

index. Hence, the index block of an indexed
allocation plays the same role as a page table does.

qIndex allocation supports both sequential and
direct access without external fragmentation.

19

Indexed Allocation: 2/4

index block

directory

20

Indexed Allocation: 3/4
qThe indexed allocation suffers from wasted space.

The index block may not be fully used (i.e., internal
fragmentation).

qThe number of entries of an index table determines
the size of a file. To overcome this problem, we may
ØHave multiple index blocks and chain them into a

linked-list
ØHave multiple index blocks, but make them a

tree just like the indexed access method
ØA combination of both

21

Indexed Allocation: 4/4

10
 d

ire
ct

 b
lo

ck
s

256 entries per index table.
What is the maximum size of a file?

22

Free Space Management
qHow do we keep track free blocks on a disk?
qA free-list is maintained. When a new block is

requested, we search this list to find one.
qThe following are commonly used techniques:

ØBit Vector
ØLinked List
ØLinked List + Grouping
ØLinked List+Address+Count

23

Bit Vector
qEach block is represented by a bit in a table. If there

are n disk blocks, the table has n bits.
qIf a block is free, its corresponding bit is 1.
qWhen a block is needed, the table is searched. If a 1

bit is found in position k, block k is free.
qIf the disk capacity is small, the whole bit vector can

be stored in memory. For a large disk, this bit
vector will consume too much memory.

qWe could group a few blocks into a cluster and
allocate clusters. This saves space and may cause
internal fragmentation.

24

Linked List
qLike the linked allocation method, free blocks can

be chained into a linked list.
qWhen a free block is needed, the first in the chain is

allocated.
qHowever, this method has the same disadvantages

of the linked allocation method.
qWe may use a FAT for the disk and chain the free

block pointers together. Note that the FAT may be
very large and consume space if it is stored in
memory.

25

Grouping
qThe first free block contains the addresses of n

other free blocks.
qFor each group, the first n-1 blocks are actually

free and the last (i.e., n-th) block contains the
addresses of the next group.

qIn this way, we can quickly locate free blocks.

3 8 50 3

8

50
6 12 20

6

12

20

(3 & 8 are free)

(6 & 12 are free)

26

Address + Counting
qThe list can be made short with the following trick:

ØBlocks are often allocated and freed in groups
ØWe may store the address of the first free block

and the number of the following n free blocks.

5

3

free block list

disk

27

The End

