setjmp, longjmp and
User-Level Threads

Failures are much more fun to hear about afterward,
they are not so funny at the time.

Sp I'illg 2019 Charles Anthony Richard Hoare

setjmp and longjmp

dYou can jump between functions, conditionally!
1 Use a jump buffer to save the return point.

1 Use a long-jump to jump to a return point.
1 Header file setjmp . h is required.

J A jump buffer is of type jmp buf.
1Set up a jump buffer with function setjmp ().

1 Execute a long jump with function longjmp ().

Here is the concept

dDeclare a variable of type jmp buf:
Jmp buf JumpBuffer;

 Call function setjmp () to mark a return point:

Setjmp (JumpBUffer) ;\ The jump buffer is

used in both calls

 Later on, use function 1ongjmp (‘)/{J{mp back:
longjmp (JumpBuffer,| 1)) ;

The meaning of this argument will be clear later

But, you need

(1 When setjmp () is called,

it saves the current state of
execution and returns O.

1 When longjmp () is

called, it sends the control

back to a marked return
point and let setjmp () to

return its second
argument????

a long jump back

to know more!

#include <setjmp.h>
jmp buf Buf;
void A(..)

{
—p1f (setjmp (Buf)==0) {

/* other statement */

}
void B(...)
{ /* other statement */

——longjmp (Buf, 1);
}

: /* other statements */:

iB(..); first time here :
}
else {
)-E- ----- f .i.r.{-.t.f. -(-\-‘ .ﬁé.-.t.{l .I.:r.{é.a: n .f.r.:é.rn"'.’ n -E

“ a long journey\n”) ;

Control Flow of setjmp() and longjmp()

»{.:oid Al.) ;“‘n.\ _....}foid B(.....)
if (setjimp(JumpBuffer) =: 0)T-- --------
L . B Iongjmp(JumpBuffer 1)
B(...): : I* cannot reach here *f

}

printf(" A long journey\n’);

The content of a jump buffer when
execute a longjmp() must be valid

ImR.Rut. BYK ~ Al Before
void A(...)
{ if (SBe(t.l-T (Buf) ==0)

els?)rlntf(‘I am back\n"); ongimpy]
} stack top
void B(...)
{ C) This is a good one!
} ‘ - K‘After
?‘oid C(...) ;;cktop

\ longjmp(Buf,1);

The content of a jump buffer when
execute a longjmp() must be valid

jmp_buf Buf;

B(.....);

if (setimp(Buf) == 0)
return;
else

printf("| am backin");

Al in C(...)
C
~af
stack top
\ back in A()
e Ionglmp()A_‘ o
577?,;\ stack top

\ .--—-n\

-

"“"{""'- }invalid

The content of a jump buffer when
execute a longjmp() must be valid

jmp_buf Btjlf1,Buf2; | Al in C(..)
void A(...) =
if (setjm (Buf1)) .
B(..... e - C
else ,
\ longjmp(Buf2, 1); stack top
: after
Fmd Bsx:) §§ longjmp(Buf1)
Clou:) | 41>. in A(...)
} 12222 -
ald C() * stack top
{ * o~
it(setim ==0), | /7T TN2?2?
Iongjmﬁﬁ1 1))\ B /}
“PRrnt(1 ambackn')y Thisons s aso BAD! ,

Jump Buffer Example: Factorial: 1/3

#include <stdio.h>
#include <setjmp.h>

jmp buf ‘JumpBuffer;‘

int result; Execution will return to here!

void main(int argc, char *argf[])

{

int n; Result is in here!
n = atoi(argv[l]);
if (setjmp (JumpBuffer) == 0)
factorial (n) ;
else
printf (“%d! = %d\n”, n,|result);

exit(0) ;

Jump Buffer Example: Factorial: 2/3

e result
void ‘factorial(int.m)...... count
{ fact (@ @ @)4’ limit
}
void fact(int Result, int Count, int n)
{
if (Count <= n)
fact (Result*Count, |Count+l}| n);
else {
result = Result;
longjmp (JumpBuffer, 1);
} Why not Count++ or ++Count?
} Count++: the value of current (rather than

the next one) Count is passed
++Count: We don’t know the evaluation order
of the argument.
Left to Right: OK

Right to Left: Oops! The value of 10
Count in Result*Count is wrong.

Jump Buffer Example: Factorial: 3/3

factorial(4)

top —fi-

factorial(4)

factorial(4)

fact(1,1,4)

fact(1,2,4)

fact(2,3,4)

fact(1,1,4)

fact(1,2,4)

fact(2,3,4)

fact(6,4,4)

—= stack top pointer

main main
factorial(4) factorial(4)
fact(1,1,4) fact(1,1,4)
fact(1,2,4)
main Ir-—:: main
factorial(4) :
:
S e
fact(2,3,4) i
fact(6,4,4) :
:

fact(24,5,4)

Jump Buffer Example: Signals-1

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

jmp buf JumpBuffer;
void handler (int) ;

void main (void)

{

signal (SIGINT, handler);

while (1) {

if (setjmp (JumpBuffer)==0) ({
printf (“Hit Ctrl-C .\n

pause() ;

.
4

void handler (int sig)

{

char c;
signal (sig, SIG_IGN) ;
printf (“Ah, Ctrl-C?\n”);
printf (“Want to quit?”);
c = getchar();
if (¢ == 'y’ || ¢ == 1Y)
exit(0) ;
else {
signal (SIGINT, handler) ;
longjmp (JumpBuffer,1) ;

}

12

| Without this 1longjmp (), control returns to here! I

Jump Buffer Example: Signals-2

#define START
#define FROM CTRL C
#define FROM ALARM
#define ALARM

jmp buf Buf;

void INT (int) ;
void ALRM(int) ;

Void main (void)

{
int Return;
signal (SIGINT, INT
signal (SIGALRM, AL

OoONBRO

I
I
I
I
I
]
I
);/
RM];
/

(1/2)

while (1) {

l{ if ((Return=setjmp (Buf))==START) ({
4

alarm (ALARM) ;
pause() ;

}

else if (Return

}
else if (Return FROM ALARM) {

print (“Alarm reset to %d sec.\n”,
ALARM) ;
alarm (ALARM) ;
}

FROM CTRL C) {

13

Jump Buffer Example: Signals-2
(2/2)

void INT (int sig) void ALRM(int sig)

{ {
char c; signal (SIGINT, SIG_IGN);
signal (SIGALRM, SIG_IGN) ; s1gna1(SIGALRM SIG_IGN);

signal (SIGINT, SIG_IGN);
print (“Want to quite?”);

= getchar();
if (e==‘y’ || e==‘Y’)
exit(0) ; longjmp (Buf | FROM ALARM)|;
signal (SIGINT, INT); }

signal (SIGALRM, ALRM) ;

1ongjmp(Buf,IFROM;CTRL_Cﬂ;

alarm clock has no effect

14

A Strange Use: 1/2

#include <stdio.h>
#include <setjmp.h>

int max, iter;
jmp buf Main, PointA, PointB;
void Ping(void) , Pong(void) ;

void main(int argc, char *argv][])

{ L
Set ret t
max = abs (atOi (argv [1])) : ct return poin

Main & call Ping ()
iter = 1; ‘(,/”’

if (setjmp (Main) == 0)

] Ping ()i] Set return point

if (setjmp (Main) == 0) @—————— Main & call Pong ()
Pong() ;

longjmp (PointA, 1);

15

A Strange Use: 2/2

void Ping(void) void Pong (void)
{ {
if (setjmp (PointA)==0)
longjmp (Main, 1) ;
while (1) {

if (setjmp (PointB)==0)
longjmp (Main, 1) ;

while (1) {
printf (“Ping-") printf (“Pong-") ;
if (setjmp (PointA)==0) iter++:;
longjmp (PointB,1) ; if (iter > max)
} exit(0)

if (setjmp (PointB)==0)
longjmp (PointA,1l) ;

This program does not)
work if there are local }
variables. Why? Output:

Ping-Pong-Ping-Pong-

A Not-So-Correct

Multithread System: 1/10

1 Before going into more details, we examine a
not-so-correct way to build a user-level thread

system.

 First, we need a (simplified) TCB data structure.

typedef struct PCB NODE *PCB ptr; /* pointer to a PCB */

typedef struct PCB NODE ({ /*
jmp buf Environment; /*
int Name; /*
PCB ptr Next; /*

} PCB;

a PCB:

jump buffer
thread name:
next PCB.

*/
*/
unused*/

*/

17

A Not-So-Correct
Multithread System: 2/10

(1 We need two more jump buffers MATN and SCHEDULER.

(] The former is used to save the main program’s environment,
and the latter is for the scheduler.

(] Because the main program and the scheduler are not
scheduled by the scheduler, they are not in the PCB list.

[There are two pointers: Head pointing to the head of the
PCB list and Current to the running thread.

Head :Ourrent

—-| Environ T
Name | ‘ .
Next - - S

18

A Not-So-Correct
Multithread System: 3/10

[The scheduler is simple.

U Initially the scheduler Scheduler () is called by the main
program to set an entry in jump buffer SCHEDULER and
jump back to the main program using jump buffer MATN
that was setup before the call to Scheduler,

] After this, we use a long jump to SCHEDULER rather than
via function call.

void Scheduler (void)

{

if (setjmp (SCHEDULER) == 0) /* setup return point
longjmp (MAIN, 1); /* get back to main.
Current = Current->Next; /* reenter. Get next

*/
*/
*/

longjmp (Current->Environment, 1); /* jump to its environ */

19

A Not-So-Correct
Multithread System: 4/10

d THREAD YIELD () is very simple.

] Release CPU voluntarily.

(1 What we need is saving the current environment to this

thread’s environment (actually a jump buffer) and
transferring the control to the scheduler via a 1ongjump.

1 Because this is so simple, we use #define

#define THREAD YIELD (name) { \
if (setjmp (Current->Environment) == 0) \
longjmp (SCHEDULER, 1); \

20

A Not-So-Correct
Multithread System: 5/10

J THREAD INIT () can be partof THREAD CREATE ().

] We create and initialize a PCB, set its return point, and long
jump back to the main program.

#define THREAD INIT (name) {
work = (PCB ptr) malloc(sizeof (PCB)) ;
work->Name = name;
if (Head == NULL)
Head = work;
else
Current->Next = work;
work->Next = Head;
Current = work;
if (setjmp (work->Environment) == 0)
longjmp (MAIN, 1) ;

P A R i

A Not-So-Correct

d THREAD CREATE () is simple.

Multithread System: 6/10

(1 We just set the return point of MATN and call the function.

#define THREAD CREATE (function, name) { \
if (setjmp (MAIN) == 0) \
(function) (name) ; \
}
void main (void)
{
Head = Current = NULL; /* initialize pointers */
THREAD CREATE (funct 1, 1); /* initialize threads */
THREAD CREATE (funct_2 , 2);
THREAD CREATE (funct_3 , 3);
THREAD CREATE (funct_4 , 4);
if (setjmp(MAIN) == 0) /* initialize scheduler */
Scheduler() ;
longjmp (SCHEDULER, 1) ; /* start scheduler */

22

A Not-So-Correct
Multithread System: 7/10

(] Each function to be run as a thread must call
THREAD_INIT ().

void funct 1 (int name)

{

int 1i;
THREAD INIT (name); /* initialize as thread */
while (1) { /* running the thread *x/

for (i = 1; i <= MAX COUNT; i++)
printf ("funct 1() executing\n");
THREAD YIELD (name); /* yield control *x /
}

A Not-So-Correct
Multithread System: 8/10

1 This implementation appears to be correct. The
following is a screenshot.

O O I Desktop — -bash — 80x24

funct_&4() executing
funct_4() executing
funct_1() executing
funct_1() executing
funct_1() executing
funct_1() executing
funct_1() executing
funct_2() executing
funct_2() executing
funct_2() executing
funct_2() executing
funct_2() executing
funct_3() executing
funct_3() executing
funct_3() executing
funct_3() executing
funct_3() executing
funct_4() executing
funct_4() executing
funct_4() executing
funct_4() executing
funct_4() executing
funct_1() executing 24
funct_1() executing

A Not-So-Correct
Multithread System: 9/10

U Itis not! Why?But you have all the ideas!
(1 We do not use many local variables, in fact only one

variable i. In a function, say funct 1 (), i is used
before THREAD YIELD ().

d Once THREAD YIELD () is called, the stack frame of
funct 1 () becomes invalid. However, this is fine,
because after returning from THREAD YIELD () this
variable is reinitialized.

[Is the jump buffer Environment of each thread

correct? In general it is not. However, the PC is correct

because it is not stored there.
25

A Not-So-Correct
Multithread System: 10/10

dThe key issue making this system not-so-correct
is that each thread does not have its stack frame.

1 As a result, once it long jumps out of its
environment the stack frame allocated by the
system becomes invalid.

1 The solution is simple: allocating a separate
stack frame for each “created” thread so that it
won’t go away.

1 This is what we intend to do.

26

Let Us Solve the Problem: 1/10

1We need a better TCB. Env is a redefined jmpbuf.

typedef struct TCB_NODE *TCB ptr;

typedef TCB ptr

typedef struct TCB_NODE {

int
int
Env
void
int
void
int
char
Queue
} TCB;

Name;

Status;
Environment;
*StackBottom;
Size;

(*Entry) (int, char**); /* entry point (function)

Argc;
**Argv;
JoinList;

THREAD t;

/* thread control block

/* thread ID

/* thread state

/* processor context area
/* bottom of stack attached
/* stack size

/* # of arguments
/* argument list
/* joining list of threads

27

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Initialize the Coroutines: 2/10

Initialize the coroutines structure. Refer to slides
used in CS3331 Concurrent Computing for the
concept of coroutines.

static int THREAD SYS INIT (void)
{

int *stack;

Running = (THREAD t) malloc(sizeof (TCB)) ; /* dummy running thread */

stack = (int *) malloc(64) ; /* 64 bytes for stack *x /
Running->Name = mtu MAIN; /* dummy = main() *x /
Running->StackBottom = stack; /* StackBottom=dummy stack */
ReadyQ.Head = ReadyQ.Tail = NULL; /* initialize ready and */
SuspendQ.Head = SuspendQ.Tail = NULL; /* suspend queues */
SysTable.Head = SysTable.Tail = NULL; /* initialize sys table. */

SYSTEM_INITIALIZE = TRUE;
return mtu_NORMAL; 28

Stack Growing Direction: 3/10

1 Because the user stack can grow up (stack at the
highest address) or grow down (stack at the end of
code and data sections), we need to know which

way it goes.

J £fromaddr is a variable in the calling function, and
toaddr is a variable in the called function.

max

max top

fromaddr

toaddr

fromaddr

toaddr I

static int growsdown (void *fromaddr) calling
{
int toaddr; called
return fromaddr > (void *) &toaddr;
}

top

29

Wrap the Created Thread: 4/10

JTHREAD WRAP () wraps up the created thread

and runs it as a function. The function to be run is
indicated by Running.

static volatile void THREAD WRAP (void)
{
(*Running->Entry) (Running->Argc, Running->Argv); /* run thread*/
THREAD EXIT(); /* if user did not call * /
/* THREAD EXIT, do it here */

30

THREAD INIT: System Dependent

JInitialize a new thread’s environment.

1 Newer version of gcc may not allow you to modify
the jump buffer.

void THREAD INIT (volatile TCB *volatile NewThread, void *StackPointer)
{

/* In Linux 1.0 the code maybe like following three lines

* NewThread->Environment-> sp = StackPointer;

* NewThread->Environment-> bp = StackPointer;

* NewThread->Environment-> pc = (void *)THREAD WRAP;
* Here is THREAD INIT for Linux 2.0

*/

NewThread->Environment[0] . jmpbuf[JB SP]

NewThread->Environment[0] . jmpbuf[JB BP] (int) StackPointer;

NewThread->Environment[0] . jmpbuf[JB PC] (int) THREAD WRAP;
} 31

(int) StackPointer;

THREAD CREATE (): 1/2

JTHREAD CREATE () allocates a TCB and a stack
for the thread being created and initialize the TCB.

THREAD t THREAD CREATE (void (*Entry) (), int Size, int Flag,
int Argc, char **Argv)
{
THREAD t NewThread;
int *StackBottom, FromAddr;
void *StackPointer;

NewThread = (THREAD t)malloc (sizeof (TCB)) /* new thread TCB */
if (NewThread == NULL)
return (THREAD t) mtu ERROR;

Size += sizeof (StackAlign); /* get new stack size */
StackBottom = (int *) malloc (Size);
StackPointer =

(void *) (growsdown (&FromAddr) ?
(Size+ (int) StackBottom) &-sizeof (StackAlign) : (int) StackBottom) ;
THREAD INIT (NewThread, StackPointer); /* initialize thread 32*/
-- Next Page -- /* architecture-dependent! *x /

THREAD CREATE (): 2/2

d Continue from previous page.

/* from previous page */

NewThread->Name = NextThreadName++;/* initial TCB wvalues x /
NewThread->Status = mtu READY;

NewThread->Entry = (void(*) (int, char*¥*))Entry;

NewThread->Argc = Argc; NewThread->Argv = Argv;
NewThread->StackBottom = StackBottom;

NewThread->Size = Size;

NewThread->JoinlList.Head = NULL; NewThread->JoinList.Tail = NULL;
THREAD READY (NewThread) ; /* thread into Ready Q */
THREAD READY (Running) ; /* add new and running */

if (Flag == THREAD SUSPENDED)
THREAD SUSPEND (NewThread) ;

THREAD SCHEDULER() ; /* reschedule threads */
return NewThread;

33

THREAD EXIT (): 1/2

d Continue from previous page.

int THREAD EXIT (void)

{
THREAD t temp;

if (Running->Name == mtu MAIN) { /* if main, exit there

/* have no thread remain

if (ReadyQ.Head !'= NULL) /* in the ready Q

return mtu ERROR;

if (SuspendQ.He;d = NULL) /* and in suspend queue

return mtu_ERROR;
return mtu_NORMAL;

}

while (Running->JoinList.Head '= NULL) { /* check for joining
temp = (THREAD t)THREAD Remove (& (Running->JoinList));

temp->Status = mtu READY;

THREAD Append (&ReadyQ,

/* make them ready
(void *) temp) ;

} /* continue to next page */

34

*/
*/
*/

*/

*/
*/

THREAD EXIT (): 2/2

d Continue from previous page.

Running->Name = mtu INVALID;
Running->Status = mtu TERMINATED;
Running = NULL;

THREAD SCHEDULER() ;

return mtu ERROR;

/*
/*

/*
/*

set current thread's TCB */

and status = terminated */
run next thread L
shouldn't reach here L

35

THREAD YIELD ()

JTHREAD YIELD () puts the running thread back
to READY and calls THREAD SCHEDULER () to
reschedule.

void THREAD YIELD (void)

{
THREAD READY (Running); /* put the running one to Ready */
THREAD SCHEDULER () ; /* ask scheduler to reschedule. */

}

36

THREAD SCHEDULE ():

1/2

JTHREAD SCHEDULE () finds and runs the next

ready thread.

static int THREAD SCHEDULER (void)

{

THREAD t volatile Nextp;

Nextp = (THREAD t) THREAD Remove (&ReadyQ); /* find a thread *x /

if (Nextp == NULL) { /* if ready queue is empty */
mtuMTP errno=mtuMTP DEADLOCK; /* a deadlock may occur *x /
ShowDeadlock () ;
exit (0) ;

return mtu_ERROR;
}

if (Running==NULL) ({ /* if running thread exited */
Running = Nextp; /* let the next run *x /

Nextp->Status = mtu RUNNING; /* its status
RestoreEnvironment (Running->Environment) ;

}

/* continue to next page */

= RUNNING * /
/* restore env*/

37

THREAD SCHEDULE (): 2/2

JTHREAD SCHEDULE () finds and runs the next
ready thread.

/* continue from previous page */

if ((Running != Nextp) &&
(SaveEnvironment (Running->Environment) == 0)) {
/* else save running's env */
Running = Nextp; /* let next thread run *x /
Nextp->Status = mtu RUNNING; /* its status = RUNNING */

RestoreEnvironment (Running->Environment); /* restore env */

}
return mtu_NORMAL;

38

Dining Philosophers: 1/2

void Philosopher (int No)

{

int Left = No; /* left/right fork numbers */
int Right = (No + 1) % PHILOSOPHERS;

int RandomTimes, i, j;

char spaces[PHILOSOPHERS*2+1];

for (i = 0; i < 2*No; i++) /* build leading spaces */
spaces[i] = ' ';
spaces[i] = '\0';

printf ("$sPhilosopher %d starts\n", spaces, No);
for (i = 0; i < Iteration; i++) {
printf ("$sPhilosopher %d is thinking\n", spaces, No);

SimulatedDelay () ; /* think for a while *x/

SEMAPHORE WAIT (Seats) ; /* wait for a seat *x/
printf ("$sPhilosopher %d has a seat\n", spaces, No);
MUTEX LOCK (Chopstick[Left]); /* wait left chop */
MUTEX LOCK (Chopstick[Right]) ; /* wait right one */
printf ("$sPhilosopher %d gets chopsticks and eats\n", spaces, No);
SimulatedDelay () ; /* eat for a while *x/
printf ("$sPhilosopher %d finishes eating\n", spaces, No);
MUTEX UNLOCK (Chopstick[Left]) ; /* release chops */
MUTEX UNLOCK (Chopstick[Right]) ;

SEMAPHORE SIGNAL (Seats) ; /* release chair *x/

}
THREAD EXIT() ;

39

Dining Philosophers: 2/2

int main(int argc, char *argv|[])

{
THREAD t Philosophers[PHILOSOPHERS] ;

int SeatNo [PHILOSOPHERS] ;
int i;

Iteration = abs (atoi(argv[l])):;

srand ((unsigned int) time (NULL)) ; /* initialize random number */
for (i = 0; i < PHILOSOPHERS; i++) /* create mutex locks */
Chopstick[i]= MUTEX INIT()
Seats = SEMAPHORE INIT (PHILOSOPHERS-1) ; /* seat semaphore */
for (i = 0; i < PHILOSOPHERS; i++) { /* create philosophers */
SeatNo[i] = i; /* philosopher number */
Philosophers[i] = /* create a thread */
THREAD CREATE (Philosopher, /* the thread function */
THREAD SIZE, /* stack size */
THREAD NORMAL, /* the thread flag */
SeatNo[i], /* play a trick here */
(char **)0) ; /* no argument list */
if (Philosophers[i] == (THREAD t)mtu ERROR) { /* if failed*/
printf ("Thread creation failed.\n"); /* exit */
}
}
for (i=0; i<PHILOSOPHERS; i++) /* wait until all done */

THREAD JOIN (Philosophers[i]) ;

return O;

40

Conclusions

[In a kernel, the kernel has to allocate a stack differently.

[Context switch has to be done differently and directly
rather than using a jump buffers.

(] The remaining should be very similar and could be
copied easily.

] The not-so-correct system is discussed here:
http://www.csl.mtu.edu/cs4411.ck/www/NOT
ES/non-local-goto/index.html

] A simple user-level thread system is in the common
directory mtuThread. tar.gz. Also refer to this page:
http://www.csl.mtu.edu/cs4411.ck/www/PRO

G/PJ/proj.html

41

http://www.csl.mtu.edu/cs4411.ck/www/NOTES/non-local-goto/index.html
http://www.csl.mtu.edu/cs4411.ck/www/PROG/PJ/proj.html

The End

