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Abstract

This paper presents a generic scheme for a central, yet
untackled issue in overlay dynamic networks: maintaining
stability over long life and against malicious adversaries.
The generic scheme maintains desirable properties of the
underlying structure including low diameter, and efficient
routing mechanism, as well as balanced node dispersal.
These desired properties are maintained in a decentralized
manner without resorting to global updates or periodic sta-
bilization protocols even against an adaptive adversary that
controls the arrival and departure of nodes.

1 Introduction

Overlay networks are employed in many settings to pro-
vide logical communication infrastructure over an existing
communication network. For example, Amir et al. use in
[1] an overlay network for wide area group communica-
tion; many ad hoc systems use overlay routing for regulat-
ing communication (see [17] for a good exposition); Klein-
berg explores in [8] routing phenomena in natural worlds
using random long-range overlay edges; and recently, much
excitement revolves around peer-to-peer schemes that uti-
lize an overlay routing network to discover and search re-
sources in highly dynamic environments, e.g., [5, 9, 11, 13,
14, 16, 18]. The exploration of overlay networks deviates
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from standard research in routing networks in its attention
to scale, dynamism of the network structure and the lack of
centralized control.

One of the main motivations stimulating this work is re-
cent interest in using overlay networks for lookup in peer-
to-peer (P2P) settings. The routing network is used for stor-
ing and searching a distributed hash table. A distributed
hash service is a fundamental tool for supporting large peer-
to-peer applications, that may support efficient storage and
retrieval of shared information for cooperating distributed
applications. Examples of contemporary stellar services
that may benefit from it are file sharing systems such as
Freenet [4], and music sharing systems, e.g., Gnutella [6].

Work todate on P2P overlay networks (e.g., [5, 9, 11,
13, 12, 14, 16, 18]) employs randomization to achieve uni-
form dispersal of hash values among peers and for building
the routing topology. There are several problems that result
from the reliance on randomization: First, a random dis-
tribution of hash values creates with high probability load
imbalance among peers of up to a logarithmic factor (see
e.g., [7, 16, 9]). Second, over a long period of time, the de-
parture and addition of peers may impair the randomization
of initial selections, and result in poor balance in such sys-
tems. In particular, node departures might be correlated due
to failures or due to the banning of a P2P service from a par-
ticular organization. Lastly, uniformity by randomization is
sensitive to adversarial intervention through peer removal
and/or joins.

Our aim in this work is to enhance the technology for
overlay networks in several important ways. First, our
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overlay network maintains its desired properties for effi-
cient routing even against adversarial removal and addi-
tions of nodes. Second, it maintains load balance among
peers. Both of these desirable goals are achieved with no
global coordination, using localized operations with reason-
able costs. Third, our techniques are of interest in them-
selves. They provide an insight that links the issues of load
balance and resilience in overlay networks with tree bal-
ancing. Lastly, our techniques are generic, and are applica-
ble to most known network topologies, including the hyper-
cube, the De Brujin bitonic network, the Butterfly network,
and others. We provide a characterization of the families of
graphs that can make use of our approach.

There are thus two concrete angles in which our work
compares favourably with previous works: The load bal-
ance and fault tolerance. With respect to load balancing,
we first note that any method that preserves initial peer dis-
tribution choices cannot be resilient to adversarial removal
and addition of nodes. The only previous work that we are
aware of that allows peer re-positioning is CAN [13]. In
CAN, a background stabilization process is employed in or-
der to recover balance, introducing a constant overhead. In
contrast, our method does maintain load balance against ad-
versarial settings, but incurs only local cost per join/leave
operation, and maintains the desired balance properties im-
mediately.

The second facet in which our work enhances the tech-
nology is in its resilience to adversarial scenarios. Our over-
lay networks can withstand node removals and additions
even when done by a malicious adaptive adversary. Most
previousworks, with the exception of [15, 5], do not attempt
to address a malicious adversary. Consequently, their per-
formance may be signficantly degraded, e.g., as a result of
removal of servers concentrated in one part of the network.
Additionally, random failures and departures are handled,
e.g., in [13, 16], via global overhaul background mecha-
nisms whereas our method has no global operations. The
censorship resistant network of [15, 5] is designed to cope
with malicious removal of up to half of the network nodes.
In contrast to our scheme, it is designed with a rough a-
priori knowledge of the number N of participants, and with
the assumption that the actual number of peers is within a
known linear envelope of N . Additionally, randomization
is relied upon in node joining.

Our approach to generic overlay emulation is as follows.
We consider a graph topology to be a family of graphs
G = fG1; G2; :::g for a monotonically increasing system
sizes. We observe that most families of graphs may be em-
ulated by viewing the dynamic overlay construction pro-
cess as a virtual tree process, in which new nodes join at
the leaves. Each member Gi of the graphs family naturally
maps to layer i of the tree. We provide a scheme for keeping
a dynamic graph in which nodes on different levels of the

tree co-exist simultaneously.
More specifically, we make use of a view suggested orig-

inally in [13] to represent the overlay construction process
as a dynamic tree. The process adds and removes nodes
to a tree, such that inner vertices represent nodes that no
longer exist (they were split), and the leaves represent cur-
rent nodes. In order to maintain the dynamic tree, when a
node joins the network, it chooses some location to join and
“splits” it into leaves. To the contrary, when a node leaves
the network, it finds a full set of siblings and “merges” them
into a single parent. The branching factor of the tree is set
so that each tree layer corresponds to one member Gi. If
the tree is balanced, we can easily overlay the leaves of the
tree with Gi and be done. Generally, the tree will not be
balanced. In fact, at the very least if the number of nodes
does not match any tree layer, then the highest tree level is
not full. Hence, we need to build an overlay network that,
though inspired by the simple-level overlay approach, con-
nects leaves on different levels.

In order to maintain an overlay graph over an unbalanced
tree, we first need to require that Gi’s exhibit certain re-
cursive structure: Gi+1 are mapped onto Gi via a parent
function, such that the neighboring relation inGi+1 induced
neighborhoods on the parents in Gi. We call such families
of graphs child-neighbor commutative (precise definition is
given below). We further connect the edges of every leaf at
level i to either the parents or the children of its would-be
end-points at level i, whichever exists.

Using this construction, we prove that the routing prop-
erties of the overlay network are related directly to the gap
in levels in the resulting dynamic tree. It is worth noting that
one could keep the tree balanced (inevitably, up to a high-
est, unfull level) as follows: All entries would occur at the
‘step’ position at the highest level. However, this approach
requires serializing all entries and creates an unacceptable
contention point for very large systems.

This leads us to construct several strategies for balanc-
ing the dynamic tree. The first is a localized, deterministic
balancing scheme, that guarantees even against a malicious
scheduler that the level-gap of the tree remains bounded by
the diameter of the smallest graph that could fit the exist-
ing nodes. We further show that the diameter is bounded by
that of the highest tree level, and hence, by the gap bound,
it is also bounded. The second is a a randomized balancing
strategy. The randomized balancing strategy makes use of
balanced allocation techniques of Azar et al. [2] and exten-
sion [10] to guarantee probabilistically that the gap in lev-
els is constant. The diameter is consequently appropriately
bounded. In order to make use of balanced allocation, we
need to extend known results to analyze the emptiest, rather
than the fullest, bin in a balanced allocation process.

Overlay networks are used for reliable and efficient mes-
sage dissemination as well as for routing and searching. For
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the latter, we finally show a generic routing strategy that
makes use of the underlying graph-family routing strategy,
and finds routes that are within our proven diameter bound.

The rest of this paper is organized as follows. Prelimi-
naries and notation are exhibited in Section 2. The dynamic
graph process is defined in Section 3, and is exemplified
with several families of graphs, including the hypercube and
the de Bruijn networks. Balancing methods are presented in
Section 4. The properties of balanced dynamic graphs are
proven in Section 5. Finally, routing is discussed in Section
6.

2 Preliminaries and Notation

Consider a family of directed graphs G =

fG1; G2; G3; : : :g, where Gi =< Vi; Ei >. Our in-
terest is in families that have a recursive structure, and
hence, we first require that all the nodes of the graph Gi

can be mapped to nodes of the graph Gi�1 using a parent
function pi : Vi ! Vi�1. Denote P = fp2; p3; : : :g the
set of parent function for G. Since all pi’s have disjoint
input domains (likewise, output domains), there should be
no confusion when omitting the index of a parent function,
and hence we simply use p().

Second, we require that for every i, every node u 2 Gi�1

has at least two nodes v; w 2 Gi such that p(v) = p(w) =
u. Denote the inverse of the parent function, the child func-
tion as ci : Vi ! 2Vi+1 , where u 2 ci(v) , pi+1(u) = v.
We have that 8u 2 Vi : jci(u)j � 2. Here again, we omit
the index of a child function and simply use c().

For a set of nodes X � Vi define p(X) =
S
x2X p(x),

and c(X) =
S
x2X c(x). Define the siblings of u 2 Vi as

s(u) = c(pi(u)). For a graph G =< V;E > and a set
X � V define �G(X) = fyj9x 2 X ^ (x; y) 2 Eg, when
G is obvious from the context, we omit it.

We will focus on a particular group of graphs and parent
functions having the following recursive nature:

DEFINITION 2.1 (The child-neighbor commutative property.)
A family of graphs and child/parent functions (G;P) is said
to have the child-neighbor commutative property if for all i
and for all u 2 Vi: �Gi+1

(c(u)) = c(�Gi
(fug)).

Let us consider some example families of graphs to clar-
ify the definitions. Note that in the following examples the
edges are directed.

Example 1 (The Hypercube.) The hypercube HCi =<
Vi; Ei > is a graph Vi = f0; 1gi with 2i nodes, namely
all the binary strings of length i. Node ha1; : : : ; aii has an
edge to node hb1; : : : ; bii if and only if there exists 1 � j � i

such that aj 6= bj and for all k 6= j: ak = bk. Consider the
parent function pi(ha1; : : : ; ai�1; aii) = ha1; : : : ; ai�1i.

Lemma 2.1 fHCig and fpig have the child-neighbor
commutative property.

The next example we consider is the de Bruijn network [3].

Example 2 (The de Bruijn graph.) The de Bruijn
DBi =< Vi; Ei > is a graph with 2i nodes, Vi = f0; 1gi.
Node ha1; : : : ; aii has an edge to node hb1; : : : ; bii if
and only if for all 1 � j � i � 1: aj+1 = bj . Thus
every node ha1; : : : ; aii has two outgoing edges to
nodes: ha2; : : : ; ai; 0i and ha2; : : : ; ai; 1i (shuffle, then
choose the last bit). Again, consider the parent function
pi(ha1; : : : ; ai�1; aii) = ha1; : : : ; ai�1i.

Lemma 2.2 fDBig and fpig have the child-neighbor
commutative property.

For every node u of any G we define its level as the index
i of the graph Gi it belongs to, formally `(u) = i , u 2
Vi. We say that u in an ancestor of v if `(u) < `(v) and
p`(v)�`(u)(v) = u (where pk(u) = p(pk�1(u))). We also
say that u is a descendant of v if v is an ancestor of u. The
diameter of a graph G is denoted diam(G).

3 The Dynamic Graph

In this section, we introduce an algorithm for maintain-
ing a dynamic overlay network that derives its characteris-
tics from a family of static graphs G. Our goal is to make
use of a family of graphs as above in order to maintain a
dynamic graph that nodes can join and leave. Intuitively,
this works by having each node join some location at Gi

by splitting it into a set of children at Gi+1, and vice versa
for leaving. However, this means that at any moment in
time, different nodes may be in differentGi’s. We therefore
specify how to connect nodes from differentGi’s in our dy-
namic overlay network. Unless mentioned otherwise, the
nodes and edges refer to the dynamic graph.

Given a family of graphs fGig and parent functions fpig
with the child-neighbor commutative property as defined
above, we now define the dynamic as follows:

DEFINITION 3.1 (Dynamic graph.) Graph D =< V;E >

is a dynamic graph for a child-neighbor commutative pair
(G;P) if it has the following properties:

1. V � [1i=1Vi.

2. If v 2 V then no ancestor of v exists in V .

3. For all u 2 V and for all v such that (u; v) 2 E`(u)

then either:

(a) v 2 V and u has an edge to v.
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(b) v =2 V but some ancestor v̂ of v exists in V . In
this case u has an edge to v̂.

(c) v =2 V but v has some descendants in V . In this
case u has an edge to all of v’s descendants that
are nodes in V .

The nodes of the dynamic overlay graph can be thought
of as the leaves of a tree. The inner vertexes represent nodes
that no longer exist (they were split), and the leaves repre-
sent current nodes. In order to maintain the tree, when a
node joins the network, it chooses some location to join
and “splits” it into leaves. On the other hand, when a
node leaves the network, it finds a full set of siblings and
“merges”, switches location with one sibling, and merges
the remaining subset into a single parent. In the next section
we will present algorithms that use the basic split and merge
operations while keeping the dynamic graph balanced.

More precisely, We now define the dynamic graph as
a process of split and merge operations as follows: The
dynamic graph starts as G1. The graph can change from
D =< V;E > into D̂ =< V̂ ; Ê > by one of the two basic
operations:

1. Split: For any u 2 V , the node u is split into c(u), i.e.,
V̂ = V n fug [ c(u).

2. Merge: For any u 2 V if s(u) � V then all nodes
s(u) merge and form the node p(u). Formally, V̂ =
V n s(u) [ fp(u)g

The change from E to Ê is as follows:

1. Split of node u into nodes c(u) :

(a) For every v 2 c(u), and every w 2 �G`(u)(v),
connect v to w, or to w’s ancestor, or to all ofw’s
descendants (whichever exists in D).

(b) For every node x that had an edge to u, then if
`(u) � `(x) then connect x to each node of c(u).
Otherwise, if `(u) < `(x) then due to the child-
neighbor commutative property there exists some
�u 2 G`(x) that is a descendant of u such that
(x; u) 2 E`(x). Find the node �(x) 2 c(x) that is
either �u or an ancestor of �u and connect x to �u

2. Merge of nodes c(u) into node u:

(a) For each w 2 �G`(u)(u), connect u to w, or w’s
ancestor, or all ofw’s descendants (whichever ex-
ists in D).

(b) For each node x that had an edge to a node �u 2
c(u), connect x to u.

For example, Figure 1 shows a merge and a split opera-
tion on a dynamic hypercube.

It is easy to see that the split and merge operations keep
the dynamic graph properties above.

4 Balancing Strategies

In this section, we introduce strategies for choosing join-
ing and leaving positions in the dynamic graph so as to keep
it balanced. Our goal is to keep the dynamic graph’s tree
balanced at all times, i.e., to minimize the level gap among
nodes that belong to different Gi’s. Intuitively, the rea-
sons for this are two-fold. First, each Gi has certain desir-
able characteristics of diameter and routing complexity. By
keeping the level-gap minimized, we can keep these prop-
erties to some degree in the dynamic graph despite the level
gap. Second, the gap in levels also represents gap in load
incurred on each node, e.g., by routing. Naturally, low level
gap results in better load balance.

We first introduce some notation. The local gap of a
node v 2 V is the maximum difference between its level
to the levels of its neighbors, gap(v) = maxi2�D(v) j`(i)�
`(v)j. The local gap of a dynamic graphD is the maximum
local gap over all nodes v 2 V . Formally localGap(D) =
maxv2V gap(v). Similarly, the global gap of the dynamic
graph D is the maximum difference between the levels
of any two nodes and is defined as globalGap(D) =
maxi;j2V j`(i) � `(j)j. We present two algorithms, a de-
terministic algorithm against adversarial additions and re-
movals of peers that maintains a local gap of 1 and a ran-
domized algorithm against a random series of additions of
peers that maintains a global gap of O(log logn) w.h.p.

4.1 Deterministic Balancing

Consider the following model: The algorithm and adver-
sary take turns. At the adversary’s turn, he may choose to
add one node and provide an access node, or choose one
node to be removed. At the algorithm’s turn, he may use
some computation and message passing and eventually re-
balance the graph by executing a merge or a split operation.

For simplicity, we present balancing algorithms for bi-
nary dynamic graph trees, i.e. 8u : jc(u)j = 2. The full
paper will include the generalized algorithm for any order
of c().

1. Re-balancing a node addition, given a new node p and
an access node u. Begin at node u, as long as there
is an edge toward a lower level node follow that node,
until a node v is reached with gap at most 1 and no
lower level neighbors. Add the new node p by splitting
node v.

2. Re-balancing a node removal, given the removed node
u. Begin at node u, as long as there is an edge toward a
higher level node, or there is a sibling node on a higher
level, follow that node. Eventually, two siblings s1; s2
at the same level with no higher level edges will be
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P000 P001 P010 P011 P100 P101 P110 P111 P000 P001 P100 P101 P110 P111

P01

Split of P01 into P010 and P010

Merge of P010 and P011 into P01

P010

P110P110

P000 P100

P111P011 P111

P110P110

P001

P100P000

P001

P01

Figure 1. Example of a merge and split on a dynamic hypercube: view of the dynamic graph as a tree
(above) and the graph itself (bottom).

found (possibly at the highest level). Change the loca-
tion of s1 to that of u, and change the location of s2 to
p(s2) (i.e., merge s1; s2).

Since nodes that get split (respectively merged) are in a
locally minimal (respectively maximal) level the local gap
of the dynamic graph remains 1 at all times.

In section 5, we show that a dynamic graph with n nodes
and a local gap of 1 has a global gap that is bounded by
the diameter of Glogn. So for dynamic networks that are
built from a family fGig with a logarithmic diameter this
balancing scheme maintains a logarithmic global gap.

Lemma 4.1 The number of nodes examined during re-
balancing is at most the global gap.

Proof: In re-balancing of node addition (respectively node
removal) each message searches for a node in lower (respec-
tively higher) level on a dynamic graph with a local gap of
1 .

Once the balancing algorithm determines which node to
split or merge, the new nodes may efficiently locate the
nodes to whom to maintain their connections in a decen-
tralized manner using the routing scheme of the existing
overlay network (the routing scheme is described later in
section 6).

4.2 Randomized Balancing

A different approach to randomizing the dynamic graph
is to use balanced allocation techniques during joining in
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order to keep the tree balanced. The randomized balanc-
ing strategy is parameterized by an additional parameter d.
Given a parameter d, a node that wants to enter the net-
work chooses d infinite strings, looks at the nodes defined
by the strings (their respective longest prefixes) and chooses
to split the one that is closest to the root.

As in the deterministic algorithm, the underlying decen-
tralized routing network is used for locating the nodes that
correspond to the infinite strings and for building the new
edge connections of the dynamic graph (routing is discussed
in section 6).

This model is interesting primarily against an oblivi-
ous adversary. In order to show bounds on the quality of
this balancing we reduce it to the well known balls in bins
model. We have the following two lemmas.

Lemma 4.2 The dynamic graph G constructed by the ran-
domized balancing process above maintains w.h.p. minimal
level of at least logn� log(logn=d)��(1) of any leaf.

Proof: We start with the following lemma on the balls into
bins model.

Lemma 4.3 Suppose that �(n(1 + ln(n=d)
d )) balls are se-

quentially placed into n bins. For each ball we choose d
bins uniformly at random and assign the ball to an empty
bin if found. Then at the end of the process there are no
empty bins with high probability.

Proof: First we compute the expected time from moving
from i non-empty bins to i + 1 non-empty bins. Clearly
once we have i non-empty bins the probability to move to
i + 1 non-empty bins is 1 � (i=n)d for each step. Hence,
the expected time is 1

1�(i=n)d
. Thus, the total expected time

from the state that all bins are empty until the state that no
bins are empty is

n�1X

i=0

1

1� (i=n)d
= �(n) +

n�1X

i=n�n=d

1

1� (i=n)d

= �(n) +

n=dX

j=1

1

1� (1� j=n)d

� �(n) +

n=dX

j=1

1

1� (1� jd=(2n))

= �(n) +

n=dX

j=1

2n

jd

= �(n+
n

d
log(n=d))

= �(n(1 +
ln(n=d)

d
)):

Now, we claim that by standard Chernoff bounds it is
easy to see that with high probability one would need only
�(n(1 + ln(n=d)

d )) balls to fill all bins.

We are now ready to proof the lemma. Assume that all
the leaves of the tree are at level i or more. We would like to
compute the number of items that are needed to be inserted
until all the leaves of the tree reach a level of at least i + 1
with high probability. Clearly, the process can be modeled
by balls assigned to 2i bins and hence in time �(2i(1 +
ln(2i=d)

d )) all the leaves are of level at least i+ 1 with high
probability. We conclude that in time

rX

i=0

�(2i(1 +
ln(2i=d)

d
)) = �(2r(1 +

ln(2r=d)

d
))

all the leaves are of level of at least r. By choosing r =
logn � log((logn)=d) � �(1) we conclude that happens
with high probability in at most n steps as needed.

Lemma 4.4 The dynamic graph G constructed by the ran-
domized balancing process above maintains w.h.p. maximal
height logn+ ln lnn= ln d+O(1) of any leaf.

Proof: We will use the following theorem from [2].

Theorem 1 Suppose that n balls are sequentially placed
into n bins. Each ball is placed in the least full bin, at
the time of the placement, among d bins, d � 2, chosen
independently and uniformly at random. Then after all the
balls are placed with high probability, the number of balls
in the fullest bin is ln lnn= ln d+O(1).

We can simulate our process of splitting the leaves by the
process of placing the balls in the bins such that the number
of balls in the highest bin is an upper bound for the number
of levels that a leaf can reach above the logn level in the
tree. Specifically, we fix a virtual binary tree of depth logn.
Each leaf of the virtual tree corresponds to a bin. For each
ball, we choose d random infinite strings, we consider first
only the prefix string of size logn. Each such prefix corre-
sponds to a leaf in the virtual tree. If one of these nodes is
still not a node in the real tree then certainly the node that
is split in the real tree will be of depth at most logn. We
view this as if the bin that corresponds to the chosen string
was empty and remained empty. In case all the d string
chosen corresponds to real nodes then the new node will
be a descendant of one of them. If we add a new ball to
the least full bin (this is not necessarily were the node was
split) still by induction the number of balls in each bin is
an upper bound on the depth (minus logn) of the deepest
leaf which is a descendant of the node that corresponds to
the bin. By the above theorem no bin will have more then
ln lnn= ln d + �(1) balls hence the level of the leaves will
be bounded by logn+ ln lnn= ln d+O(1).

Putting d to be logarithmic in n, we obtain that the random-
ized balancing algorithm obtains constant global level-gap
w.h.p.
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4.3 A combined balancing approach

We can also define a combined strategy where we first
randomly choose d strings, use the deterministic balancing
algorithm on each string, and finally choose to split the node
with the lowest level found.

From a practical point of view combining the two ap-
proaches is advantageous. Theoretically it strives to min-
imize the global gap using both algorithms. This strategy
works both against a random sequence and an adaptive ad-
versary. When peer dynamism is random the global gap
remains constant w.h.p., and even if a malicious adversary
adaptively tries to enlarge the global gap, the local gap re-
mains at most 1. As we shall show in the next section, a
constant local gap bounds the global gap as a function of
the size of the network and the diameter of the underlying
family fGig (see Corollary 5.4).

5 Dynamic Graph Properties

5.1 Paths in the dynamic graph

DEFINITION 5.1 A path P = u1; u2; : : : u` will be called
a descendant path of a path Q = v1; v2; : : : vm (and Q an
ancestor path of path P ) if P can be partitioned intom con-
secutive nonempty subsequences S1; : : : Sm, s.t. for each i,
all nodes of Si are descendants of vi. The extension of a
descendant path P of Q is defined as jP j � jQj = l �m.

The child-neighbor commutativity naturally extends to
paths. If (u; v) 2 Ei then for any j > i let U; V � Vj be
the sets of all the descendants of u and v inGj , respectively.
Then U � �Gj

(V ) and so from any �u 2 U there exists an
edge to some �v 2 V . Thus if �u is a node of the dynamic
graph and a descendant of u then there exists some node �v
of the dynamic graph that is a descendant of v such that �u
has an edge to �v in the dynamic graph. The following is a
direct result:

Lemma 5.1 Let ` be the lowest level of the dynamic graph,
fix any two nodes u; v in the dynamic graph and let û ;v̂ be
their ancestors in G` then:

1. Every path between u and v in the dynamic graph has
an ancestor path between û and v̂ in G`

2. Every pathQ between û and v̂ inG` has a descendant
path P in the dynamic graph between u and some de-
scendant ~v of v in the dynamic graph with extension 0
(jP j = jQj).

5.2 Diameter

Lemma 5.2 Fix any node s on the lowest level ` then the
distance from s to any node in the dynamic graph is at most
diam(Glogn).

Proof: Consider a source node s on the lowest level `
and any target node t on the highest level h in the dynamic
graph, let t̂ be the ancestor of t in G`. Consider the shortest
path Q in G` from t̂ 2 V` to s. From lemma 5.1 there exists
a descendant path Q with extension 0 from s to t in the
dynamic graph. Since jc(u)j � 2 we have ` � logn.

Corollary 5.3 For a dynamic graph with n nodes and local
gap 1, the global gap g, is at most diam(Glogn) and the
highest level is at most diam(Glogn) + logn.

Theorem 2 For a dynamic graph with n nodes and global
gap g, the diameter is

minf2diam(Glogn); diam(Glogn+g)g :

Proof: The 2diam(Glogn) bound follows directly from
lemma 5.2

For the diam(Glogn+g) bound, denote the highest level
h � logn + g. For any s; t 2 V , fix any descendant �s of
s in Vh. Due to the commutative property, any path from s

to t in the dynamic graph is an ancestor of some path from
�s to �t in Gh where �t is some descendant of t in Vh.Thus the
shortest path from s to t in the dynamic graph is bounded
by the diameter of Gh.

Corollary 5.4 If for all i the diameter of Gi is at most i,
then a dynamic graph on n nodes, with local gap 1, has a
diameter of at most than 2 logn.

For the examples above, these results imply the follow-
ing: The diameter of the dynamic hypercube or de Bruijn
graphs is at most 2 logn, and their global gap is at most
logn.

Thus the onus of creating a good network lies on the
choice of a good family fGig since diam(Gi) is crucial
to the diameter of the dynamic network.

6 Routing on dynamic graphs

The dynamic graph binary tree naturally induces a bi-
nary labeling, i.e., each left branch adds a postfix of ’0’ and
each right branch adds a postfix of ’1’. A routing target is
given as an infinite series t1; t2; :::, and the goal is to find a
network node that matches a prefix of the target.

In order to find a certain target, each node must be able
to route the lookup request to a neighboring node until the
target is reached. A locally computable routing function
needs to compute the ‘next’ node to traverse to. We will say
that a routing function R : V � f0; 1g� ! V is k bounded
on G if the following properties hold on G = (V;E):

1. Routing function gives an existing edge (u;R(u; t)) 2
E.
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2. If R(v; t) = v then v is a prefix of t.

3. Define Rj(u; t) = R(Rj�1(u; t); t) then Rk(u; t) =
Rk+1(u; t).

We will now show that if routing functions with some re-
cursive properties exist for each Gi then the dynamic graph
has a routing function.

DEFINITION 6.1 Given a graph G = (V;E) and a routing
function R, for any node u 2 V and target t we define the
path PR(u; t) as the sequence of nodes which are traversed
using the routing function R when routing from u to the
node who is a prefix of t.

DEFINITION 6.2 A family of routing functions R =
fR1; R2; : : :g is k fully recursive for a commutative fam-
ily (G;P) if for any u 2 Vi and for any child v 2 c(u) we
have that PRi+1

(v; t) is a descendant path with extension k
of the path PRi

(u; t).

Given fully recursive routing functions R =
fR1; R2; : : :g for (G;P), we define a local routing R

on the dynamic graph, given a node u 2 V and a target
binary string t as follows:

1. Let h = maxv2�D(u) `(v) be the highest level of all of
u’s neighbors.

2. Choose any descendant �u of u in Vh and compute
Rh(�u; t) = v.

3. Return either v or some ancestor of v that is a neighbor
of u.

Theorem 3 Given a fully recursive routing (G;P ;R)
where Ri is f(jVij) bounded. On a dynamic graph on n

nodes with a global gap of g the routingR is a f(jVlogn+g j)
bounded routing function.

Proof: Consider the path Q taken by the above routing R
originating at node u and ending at node v that matches the
prefix of t. Denote the highest level h � logn + g. Now
examine the path P taken on graphGh from any descendant
of u in Vh to the descendant v̂ 2 Vh of v that matches the
prefix of t using the routing function Rh. Due to the child-
neighbor commutative property, and the fully recursive na-
ture of Ri, the real path Q taken on the dynamic graph is an
ancestor path of path P and thus jQj � jP j.

Corollary 6.1 Given a log(n) bounded recursive routing
function for eachGi a dynamic graph on n nodes, with local
gap 1 has a 2 logn bounded routing function.

6.1 Examples of routing on dynamic networks

Routing on the dynamic hypercube. Consider the rout-
ing function Ri that ‘fixes’ the left most bit that does not
equal the target, clearly fRig is recursive. Remember that
the lowest level of such a graph with n nodes is 2 logn.
Now consider the routing function R on a dynamic hyper-
cube with local gap 1. Each move fixes one bit, so after at
most 2 logn steps the correct node will be found.

Routing on the dynamic butterfly. We consider the but-
terfly network as a further example. In the butterfly family
B = fB1; B2; B3; : : :g every graph Bi has i2i�1 nodes, so
some nodes need to split into more than 2 children in order
to maintain the child-neighbor commutative property. Thus
the encoding of nodes is nontrivial.

DEFINITION 6.3 Each Bi is a triplet (Vi; Ei; Li), s.t.
(Vi; Ei) is a graph and Li � Vi. Li will be called the
lower nodes of the graph Bi. We now define Bi recur-
sively. B1 is a single node graph V1 = feg and L1 = V1.
Bk is defined as follows: Lk = Lk�1 � f01; 00g, Vk =
Vk�1�f10; 11g[Lk. Any u = hu1; : : : ; u2ki 2 Vk nLk is
connected to �Bk�1(u1; : : : ; u2k�2)�fu2k�1u2kg, and any
u = hu1; : : : ; u2ki 2 Lk is connected to fu1; : : : ; u2k�2g�
f10; 11g.

The parent function is defined as follows: for any u =
hu1; : : : ; u2ki 2 Vk, p(u) = hu1; : : : ; u2k�2i. From the
recursive nature of the definition it is clear that the child-
neighbor commutative property holds. Note that any node
in Li splits into 4 children nodes, and any node not in Li
splits into two nodes. For this encoding of nodes we provide
a fully recursive routing family based on a standard 3 logn
routing (details in the full paper) and thus it is possible to
route to any target on a dynamic butterfly on n nodes with
a local gap of 1 in O(logn) steps.

Routing on the dynamic de Bruijn network.

DEFINITION 6.4 A family of routing functions R is par-
tially recursive for a commutative family (G;P) if for any
u 2 Vi there exists a child v 2 c(u) such that PRi+1(v; t) is
a descendant path of the path PRi(u; t).

In general, we do not have a routing strategy for the
dynamic graph of a family with partially recursive routing
only. For such routing functions a node must know which
child to choose to be used in the routing algorithm.

However, in the case of the de Bruijn network introduced
above, we have a partially recursive routing that can be used
for the dynamic graph, as follows: The function Ri for the
de Bruijn network Gi computes the ‘next’ node in the fol-
lowing simple manner: given a node v with a binary iden-
tifier hv1; : : : ; vki and a target t = ht1; t2; : : :i, find the
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minimal j such that v = hv1; : : : ; vj ; t1; : : : ; tk�ji. The
‘next’ node is the neighbor hv2; : : : ; vj ; t1; : : : ; tk�j+1i.
This routing is partially recursive:

DEFINITION 6.5 Routing on a dynamic de Bruijn network
with local gap 1: Consider a node v = hv1; : : : ; vki 2
V and a target t = ht1; t2; : : :i, find the minimal j

such that v = hv1; : : : ; vj ; t1; : : : ; tk�ji . Compute
Rk+1(vtk�j+1; t) = u and route to u, or to p(u), or to
p(p(u)) whichever exists in the dynamic graph.

The lowest level of a dynamic de Bruijn network on n

nodes is at most 2 logn. Routing on the lowest level and
thus on the dynamic graph is bounded by 2 logn.
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