Third Review

This review covers the topics of week11– week14.

Note: The final exam is comprehensive. The percentage of final exam:
	Week11-14: 50%
	Week 1 – 5: 25%
	Week 6 – 10: 25%

You need to know the data structure names, and method names. You need to know the algorithm of the methods and their cost. You should also make the appropriate choice of data structures and algorithm to real life problems. You need to be able to illustrate the algorithm running step by step with small sample data.
B-Tree 
	Definition: a version of multiple-way (a,b) tree where each internal node is at least half full. 
		
	Cost model: 
Number of disk IO operations.

How many keys to store at each node? In order words, what is the order (fan out) of B-Tree?
As many as you can fit into a single disk blocks.

The height of the B-tree with order of d:
	O(logdn)

Cost – I/O complexity 
		b:  the order of B-tree
		n: number of total entries
		B: block size, b is proportional to size B.
	Operation
	Time

	size, isEmpty
	O(1)

	find, insert, remove
	O(logceiling(b/2)n) ie. O(logBn)




Application: 
Database: The size of the data is very large. All the data has to be stored in the external disk since it won’t fit into RAM. 
The data has to be brought into memory when it is being processed. The disk transfer dominates the overall processing time.
Reducing the number of disk transfer will improve the overall performance. 
The higher you can get for b, the less I/O, the better performance.

Graph
	Definition: a set of vertices V and a set of edges E
	Terminology: 
		(Undirected) Graph
			Degree of a vertex
			incidentEdges of a vertex
			Connected graph

		Directed
			Incoming degree
			Incoming edges
			Outgoing degree
			Outgoing edges
			Strongly connected

		Simple Graph – no parallel edge, self-loops

		Directed Acyclic Graph (DAG)

		Spanning tree/Minimum Spanning Tree

		Forest

		Path/shortest path

	Property
graph G with n vertices and m edges then  
Σv∈G deg(v) = 2m
m<=n(n-1)/2

directed-graph, G with n vertices and m edges then  
Σv∈G indeg(v) = m = Σv∈G outdeg(v)
m<= n(n-1)
		
		Spanning tree T of undirected graph G with n vertices and m edges
			number of edges in T = n -1
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	Data structure of graph representation
		Edge List
			List of vertices
			List of edges
			Space cost: O(n+m)

		Adjacency List
			List of vertices
			List of edges
			Each vertex maintains its own list of incident edges 
			Space Cost: O(n+m+2m), i.e. O(n+m)

		Adjacency Matrix
			List of vertices
			List of edges
			A two-dimensional array of edge references between any pair of vertex
			Space Cost: O(n+m+n2), i.e., O(n2)

		
	Method and Cost
		n: number of vertices
		m: number of edges
	
	Operation
	Edge List
	Adjacency List
	Adjacency Matrix

	Vertices *
	O(n)
	O(n)
	O(n)

	Edges *
	O(m)
	O(m)
	O(m)

	endVertices(e), opposite(e,v)
	O(1)
	O(1)
	O(1)

	incidentEdges(v) *
	O(m)
	O(deg(v))
	O(n)

	areAdjacent(u,v)
	O(m)
	O(min(deg(u),deg(v))
	O(1)

	Replace
	O(1)
	O(1)
	O(1)

	insertVertex(V)
	O(1)
	O(1)
	O(n2)

	insertEdge(u,v,E)
	O(1)
	O(1)
	O(1)

	removeEdge(e)
	O(1)
	O(1)
	O(1)

	removeVertex(v)
	O(m)
	O(deg(v))
	O(n2)



	*: these methods return a new collection of data, not the pointer to the existing collections.
	Algorithms 
		See here for all pseudo code
		Depth-First Search for undirected Graph
			Decorate the vertex and edge with information as each one is being visited
				Vertex – not visited, visited
				Edge – unexplored, discovery edge, back edge

			Basic Implementation 
 Recursive implementation – O(n+m)
				

			Application:
			1. Visiting all vertices and edges 
				2. Testing connectivity ( dfs starting from one vertex can reach all other vertices)
				3. Finding a cycle (if any back edge)
				4. Finding a spanning tree (all the discover edges)

		Depth-First Search for directed Graph
			Decorate the vertex and edge with information as each one is being visited
				Vertex – not visited, visited
				Edge – unexplored, discovery edge, back edge, forward edge, cross edge

			Basic Implementation 
				Similar to the depth-first search for undirected graph. 

			Application:
			Test strongly connected – Time Cost O(n+m)
				Run dfs trice from any given node, one with the original edges, one with reversed edges.


		Breadth-First Search for undirected graph
			Decorate the vertex and edge with information as each one is being visited
				Vertex – not visited, visited
				Edge – unexplored, discovery edge, cross edge

			Basic Implementation 
				1. Iterative implementation with a queue – Time cost: O(n+m)
2. Iterative implementation with one sequence for each level – Time cost: O(n+m)

			Application:
			1. Visiting all vertices and edges 
				2. Testing connectivity ( bfs starting from one vertex can reach all other vertices)
				3. Finding a cycle ( if any cross edge)
				4. Finding a spanning tree ( all the discover edges)
				5. Finding a shortest path in terms of number of edges
		
Transitive closure G* 
			G* has all the vertices as G. if G had a directed PATH from u to v, G* had a directed EDGE from u to v.

			Implementation
				FloydWarshall ‘s algorithm – cost O(n3)
Topological Order
			Definition: For DAG, find a order of vertices, v1, ... , vn, such that for all edges in G (vi, vj),  we have i < j. 

Basic Implementation
1. Use incoming counter value strategy – time cost O(n+m) 
2. Use outgoing counter value strategy – time cost O(n+m)
3. Use depth-first search strategy  - time cost O(n+m)

Application
1. Prerequisites between courses
2. Activity order for a typical student

Shortest Path from a Single source
			Weighted graph
			The weight of path: w(P) = ∑ w((vi , vi+1)) for all edges in P
			Distance d(u,v) = min(w(p)) for all paths between u and v

			Implementation
				Dijkstra’s Algorithm main components
					PQ - Greedy – choose the minimum distance each loop
					Distance definition - Relaxation – update the distance – Dynamic programming
				
					Cost: 
						PQ-Heap: O((n+m)log n) or O(m log n) if G is connected
						PQ-unordered Sequence: O(n2+m), i.e.  O(n2)
						If many edges (m > n2 / log n) then PQ-unordered sequence is better

			Application
1. Figure out the network bandwidth from node A to node B
2. Figure out the shortest distance between cities.
Minimum Spanning Tree
			Implementation
				Kruskal’s Algorithm
					Cluster
					Greedy – choose the edge with minimum weight

			Application
				1.  Choose what roads to build to connect all shopping centers
						

Dynamic Programming
	It is a technique used primarily for optimization problems.
Using brute force to check all possibilities and find the best, the cost is exponential.
With dynamic programming technique, the cost is polynomial. 
Often using arrays/tables to construct the solution from bottom up 
Problem properties
	Simple subproblems  
	Subproblem optimization
	Subproblem overlap


Longest Common Subsequence(LCS)
		Subsequence definition 
 Taking characters from a string in order from left to right but not necessary continuously

Find the longest common subsequence of X[0..n-1] and Y[0..m-1]

1. Brute force: time cost O( 2n m)

2. Dynamic programming: time cost O(nm)

Table: L
L[i,j]: the length of the LCS of X[0..i] and Y[0..j]

				Subproblem:
						L[i, j] = L[i-1, j-1] + 1 if xi = yj 
L[i, j] = max{ L[i-1, j], L[i, j-1]} xi != yj

				Construct the table L[-1..n-1, -1..m-1]

			You need to be able to 
illustrate the algorithm by filling the L[i,j] table
construct the actual longest subsequence
0/1 knapsack problem
		We are given a set of n items, each has a weight w[i] and a value v[i]. 
We are also given a weight bound w ( the size of our knapsack). 
The goal is to find the subset of items of maximum total value such that sum of their size is at most S (fit into the knapsack)

1. Brute force: time cost O( 2n w)

2. Dynamic programming: time cost O(nw)
Table: m : size n by w
		m[i,j]:  the most value that can be put in the knapsack with the weight bound  j, considering only the first i items. 
			        
m[i,w] = m[i-1, w] if w[i] > w
m[i,w] = max( m[i-1,w],    m[i-1,m-w[i]] +v[i]) if w[i]<=w


Egg Drop puzzle 

n floors, m eggs. What is the minimum number of necessary drops to test the highest floor that the egg can survive.
D[0..n, 0..m]

D[0,i] = 0 for all i   //0 floor needs 0 drops
D[i,0] = infinite where 1<=i<=n //zero egg has no solution
D[i,1]=i where 1<=i<=n //one egg

D[i,j] = min (1 + max ( d[x-1, j-1], d[i-x, j])) for x from 1 to i

time cost O( m n^2 )
Exercise

R-14.16 Graph and DFS, BFS
R-14.17 topological order question
R-14.27 MST
R-14.33 Dijkstra’s algorithm – fill a table with changing distance value for each iteration

R-13.14 show the longest common subseqence – fill the table to show to bottom-up building procedure

1. Find the earliest arrival time from Hancock to other airports given the start time
2. The cheapest airline price from Hancock to any other airports
3. The minimum number of connections from Hancock to every airport



