
Operating Systems*
*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.

 Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene.

It takes a really bad school to ruin a good student

and

a really fantastic school to rescue a bad student.

Dennis J. Frailey
1

Spring 2019

Overview

Operating system definition

Software to manage a computer’s resources for

its users and applications

OS challenges

Reliability, security, responsiveness, portability,

…

2

What is an

Operating

System?
Software to manage a

computer’s resources

for its users and

applications

3

Operating System Roles

Referee:

Resource allocation among users, applications

 Isolation of different users, applications from each
other

Communication between users, applications

Illusionist:

Each application appears to have the entire machine to
itself

 Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

Glue:

Libraries, user interface widgets, …

4

Example: File Systems

Referee:

Prevent users from accessing each other’s files

without permission

Even after a file is deleted and its space re-used

Illusionist:

Files can grow (nearly) arbitrarily large

Files persist even when the machine crashes in

the middle of a save

Glue:

Named directories, printf, …

5

Question

What (hardware, software) do you need to be able

to run an untrustworthy application?

6

Question

How should an operating system allocate

processing time between competing uses?

Give the CPU to the first to arrive?

To the one that needs the least resources to

complete? To the one that needs the most

resources?

7

OS Challenges

1. Reliability

– Does the system do what it was designed to do?

2. Availability

– What portion of the time is the system working?

– Mean Time To Failure (MTTF), Mean Time to

Repair

3. Security

– Can the system be compromised by an attacker?

4. Privacy

– Data is accessible only to authorized users
8

OS Challenges

 Portability

For programs:

Application
programming
interface (API)

Abstract virtual
machine (AVM)

For the operating
system

Hardware
abstraction layer 9

OS Challenges
 Performance

Latency/response time

How long does an operation take to complete?

Throughput

How many operations can be done per unit of time?

Overhead

How much extra work is done by the OS?

Fairness

How equal is the performance received by different

users?

Predictability

How consistent is the performance over time?
10

Computer Performance Over

Time

11

Early Operating Systems:

Computers Very Expensive

One application at a time

Had complete control of hardware

OS was runtime library

Users would stand in line to use the computer

Batch systems

Keep CPU busy by having a queue of jobs

OS would load next job while current one runs

Users would submit jobs, and wait, and wait,

and

1/17/2019 12

Time-Sharing Operating Systems:

Computers and People Expensive

Multiple users on computer at same time

Multiprogramming: run multiple programs at

same time

Interactive performance: try to complete

everyone’s tasks quickly

As computers became cheaper, more important

to optimize for user time, not computer time

13

14

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Run Wait WaitRun

Time

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

(a) Uniprogramming

Time

(b) Multiprogramming with two programs

Time

(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5 Multiprogramming Example

Today’s Operating Systems:

Computers Cheap

Smartphones

Embedded systems

Laptops

Tablets

Virtual machines

Data center servers

15

Tomorrow’s Operating Systems

Giant-scale data centers

Increasing numbers of processors per computer

Increasing numbers of computers per user

Very large scale storage

16

17

Operating-System Structures

Simple Structure

Layered Approach

Microkernels

Modules

18

Simple Structure

Simple structure

systems do not have

well-defined structures

Unix only had a limited

structure: kernel and

system programs

Everything between the

system call interface

and physical hardware

is the kernel.

ROM BIOS device driver

MS-DOS device drivers

application programs

resident sys program

MS-DOS structure

19

Layered Approach: 1/4

The operating system is broken up into a number
of layers (or levels), each on top of lower layers.

Each layer is an implementation of an abstract
object that is the encapsulation of data and
operations that can manipulate these data.

The bottom layer (layer 0) is the hardware, and
the highest one is the user interface.

The main advantage of layered approach is
modularity.

20

Layered Approach: 2/4

The lowest layer is process
management.

Each layer only uses the
operations provided by lower
layers and does not have to
know their implementation.

Each layer hides the
existence of certain data
structures, operations and
hardware from higher-level
layers. Think about OO.

hardware

file system

communication

I/O & Device

virtual mem

process

Users

s
u

p
e
rv

is
o

r
m

o
d

e

21

Layered Approach Probs: 3/4

It is difficult to organize the system in layers,
because a layer can use only layers below it.
Example: virtual memory (lower layer) uses
disk I/O (upper layer).

Layered implementations tend to be less
efficient than other types. Example: there may
be too many calls going down the layers: user
to I/O layer to memory layer to process
scheduling layer.

22

Layered Approach Probs: 4/4

The layered approach

may also be represented

as a set of concentric

rings.

The first OS based on

the layered approach

was THE, developed by

E. Dijkstra.

layer 0: hardware

0

1

n

layer n: user interface

23

Microkernels: 1/5

Only absolutely essential core OS functions
should be in the kernel.

Less essential services and applications are
built on the kernel and run in user mode.

Many functions that were in a traditional OS
become external subsystems that interact with
the kernel and with each other.

24

Microkernels: 2/5

The main function

of the microkernel is

to provide

communication

facility between the

client programs and

various services.

Communication is

provided by

message passing.

p
ro

ce
ss se

rve
r

virtu
al m

e
m

o
ry

file
 se

rve
r

d
e

vice d
rivers

clie
n

t p
ro

ce
ss

hardware

microkernel

25

Microkernels: 3/5

Uniform interfaces: message passing

Extensibility: adding new services is easy

Flexibility: existing services can be taken out
easily to produce a smaller and more efficient
implementation

Portability: all or at least most of the processor
specific code is in the small kernel.

Reliability: A small and modular designed
kernel can be tested easily

Distributed system support: client and service
processes can run on networked systems.

26

Microkernels: 4/5

But, microkernels do have a problem:

As the number of system functions increases,

overhead increases and performance reduces.

Most microkernel systems took a hybrid

approach, a combination of microkernel and

something else (e.g., layered).

27

Microkernel vs. Layered Approach

hardware

file system

communication

I/O & Device

virtual mem

process

Users

s
u

p
e
rv

is
o

r
m

o
d

e

p
ro

ce
ss se

rve
r

virtu
al m

e
m

o
ry

file
 se

rve
r

d
e

vice d
rivers

clie
n

t p
ro

ce
ss

hardware

microkernel

Microkernels: 5/5

28

Modules: 1/2

The OO
technology may
be used to create a
modular kernel.

The kernel has a
set of core
components and
dynamically links
in additional
services either
during boot time
or during run
time.

core Solaris
 kernel

scheduling
device/bus
 drivers

 other
modules

STREAMS
 modules

executable
 format

loadable
 syscalls

file system

29

Module: 2/2

The module approach looks like the layered

approach as each module has a precise definition;

however, the module approach is more flexible in

that any module can call any other module.

The module approach is also like the microkernel

approach because the core module only includes

the core functions. However, the module

approach is more efficient because no message

passing is required.

30

Virtual Machines: 1/5

A virtual machine, VM, is a software between

the kernel and hardware.

A VM provides all functionalities of a CPU with

software simulation.

A user has the illusion that s/he has a real

processor that can run a kernel.

31

Virtual Machines: 2/5

hardware

kernel

processes

hardware

kernel kernel kernel

hardware

VM implementation

VM1 VM2 VM3

processes processes processes

32

Virtual Machines: 3/5

 Self-Virtualized VM: the VM is identical to the

hardware. Example: IBM’s VM/370 and

VMware (creating a VM under Linux to run

Windows).

 Non-Self-Virtualized VM: the VM is not

identical to the hardware. Example: Java

Virtual Machine JVM and SoftWindow.

 It can be proved that all third-generation CPUs

can be virtualized.

33

Virtual Machines: 4/5

VM’s are difficult to implement because they
must duplicate all hardware functions.

Benefits:

VM provides a robust level of security

VM permits system development to be done
without disrupting normal system operation.

VM allows multiple operating systems to run
on the same machine at the same time.

VM can make system transition/upgrade
much easier

34

Virtual Machines: 5/5

VMware Java VM

35

Genealogy of Several Modern

Operating Systems

36

The End

